Ribosome frameshifting during translation of bacterial dnaX can proceed via different routes, generating a variety of distinct polypeptides. Using kinetic experiments, we show that -1 frameshifting predominantly occurs during translocation of two tRNAs bound to the slippery sequence codons. This pathway depends on a stem-loop mRNA structure downstream of the slippery sequence and operates when aminoacyl-tRNAs are abundant. However, when aminoacyl-tRNAs are in short supply, the ribosome switches to an alternative frameshifting pathway that is independent of a stem-loop. Ribosome stalling at a vacant 0-frame A-site codon results in slippage of the P-site peptidyl-tRNA, allowing for -1-frame decoding. When the -1-frame aminoacyl-tRNA is lacking, the ribosomes switch into -2 frame. Quantitative mass spectrometry shows that the -2-frame product is synthesized in vivo. We suggest that switching between frameshifting routes may enrich gene expression at conditions of aminoacyl-tRNA limitation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.molcel.2017.04.023 | DOI Listing |
Int J Syst Evol Microbiol
January 2025
Department of Biology, Slippery Rock University, Slippery Rock, Pennsylvania 16057, USA.
A polyphasic taxonomic study was carried out on strain T9W2-O, isolated from the roots of the aquatic plant . This isolate is rod-shaped, forms yellow/orange pigmented colonies and produces the pigment flexirubin. Nearly complete 16S rRNA gene sequence homology related the strain to , with 98.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
January 2025
Department of Biology, Slippery Rock University, Slippery Rock, Pennsylvania, 16057, USA.
A polyphasic taxonomic study was carried out on strain T5W1, isolated from the roots of the aquatic plant . This isolate is Gram-negative, rod-shaped, motile, aerobic and non-pigmented. Nearly complete 16S rRNA gene sequence homology related the strain to , with 98.
View Article and Find Full Text PDFNucleic Acids Res
December 2024
Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
West Nile virus (WNV) requires programmed -1 ribosomal frameshifting for translation of the viral genome. The efficiency of WNV frameshifting is among the highest known. However, it remains unclear why WNV exhibits such a high frameshifting efficiency.
View Article and Find Full Text PDFMicroorganisms
October 2024
Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
A polyphasic taxonomic study was carried out on the rod-shaped, orange-pigmented strain C11, isolated from gold mine tailings. Sequencing of the 16S rRNA gene showed a relatedness to , with a 98.4% and 98.
View Article and Find Full Text PDFbioRxiv
October 2024
Innovative Genomics Institute, University of California-Berkeley, Berkeley, CA, USA.
West Nile Virus (WNV), a member of the family, requires programmed -1 ribosomal frameshifting (PRF) for translation of the viral genome. The efficiency of WNV frameshifting is among the highest observed to date. Despite structural similarities to frameshifting sites in other viruses, it remains unclear why WNV exhibits such a high frameshifting efficiency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!