A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Characterization of Bitter Compounds via Modulation of Proton Secretion in Human Gastric Parietal Cells in Culture. | LitMetric

Characterization of Bitter Compounds via Modulation of Proton Secretion in Human Gastric Parietal Cells in Culture.

J Agric Food Chem

Department of Nutritional and Physiological Chemistry, Faculty of Chemistry , University of Vienna, Althanstraße 14 , 1090 Vienna , Austria.

Published: March 2018

Humans perceive bitterness via around 25 different bitter receptors. Therefore, the identification of antagonists remains a complex challenge. We previously demonstrated several bitter-tasting compounds such as caffeine to induce acid secretion in the stomach and in a human gastric tumor cell line (HGT-1). Here, the results of a fluorescent-based in vitro assay using HGT-1 cells and a human sensory panel testing nine selected potential bitter modulators, with or without the bitter compounds caffeine or theobromine, were compared. Of the bitter-modulating compounds tested, eriodictyol, matairesinol, enterolacton, lariciresinol, and homoeriodictyol reduced the effect of caffeine on proton secretion by -163 ± 14.0, -152 ± 12.4, -74 ± 16.4, -58 ± 7.2, and -44.6 ± 16.5%, respectively, and reduced the bitter intensity of caffeine in the human sensory panel. In contrast, naringenin and 5,7-dihydroxy-4(4-hydroxyphenyl)chroman-2-one neither reduced the caffeine-induced proton secretion in HGT-1 cells nor showed an effect on bitter intensity perceived by the sensory panel. Results for theobromine were not as pronounced as those for caffeine, but followed a similar trend. The results demonstrate that the HGT-1 in vitro assay is a useful tool to identify potential bitter-masking compounds. Nevertheless, a sensory human panel is necessary to quantify the bitter-masking potency.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.7b01051DOI Listing

Publication Analysis

Top Keywords

proton secretion
12
sensory panel
12
bitter compounds
8
human gastric
8
compounds caffeine
8
vitro assay
8
hgt-1 cells
8
human sensory
8
bitter intensity
8
compounds
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!