Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objectives: Central (aorta) and Sano (right ventricle)-to-pulmonary artery (PA) shunts, palliative operations for infants with complex heart defects, can develop life-threatening thrombosis. We employed computational fluid dynamics (CFD) to study pulsatile flow in these shunts, with the goal to identify haemodynamic characteristics conducive to thrombus formation.
Methods: CFD, using the finite volume method with cardiac catheterization data, and computer simulations, based on angiography, were employed to determine flow-velocity field, wall shear stress (WSS) profile and oscillatory shear index (OSI).
Results: At prominent angulation, in central shunts (4 and 3.5 mm), WSS reached 245 and 123 (Pascal-Pa), peak systole and 137 and 46 Pa, end diastole; and, in Sano shunts (5 and 6 mm), WSS attained 203 and 133 Pa, peak systole and 1.6 and 1.5 Pa, end diastole. Counter-rotating flow vortices augmented WSS. These high WSSs can promote platelet aggregation, leading to thrombus formation. The OSIs averaged 0.39, indicative of multidirectional shearing forces. Shunt burden was assessed by averaging WSS, over its luminal area and the cardiac cycle. For the central shunts, these WSSs were 73.0 and 67.2 Pa; whereas, for the Sano shunts, 34.9 and 19.6 Pa. For modified Blalock-Taussig shunts (4 and 3.5 mm), the averaged WSSs were significantly lower at 26.0 and 27.5 Pa, respectively.
Conclusions: CFD modelling is an important tool to determine blood flow behaviour in shunts. Graft angulation presents a risk for shear stress-induced, platelet- mediated thrombosis, which is more likely to occur in elongated central than in Sano shunts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/icvts/ivx036 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!