Toxin-antitoxin (TA) systems are gene modules that are ubiquitous in free-living prokaryotes. Diverse in structure, cellular function, and fitness roles, TA systems are defined by the presence of a toxin gene that suppresses bacterial growth and a toxin-neutralizing antitoxin gene, usually encoded in a single operon. Originally viewed as DNA maintenance modules, TA systems are now thought to function in many roles, including bacterial stress tolerance, virulence, phage defense, and biofilm formation. However, very few studies have investigated the significance of TA systems in the context of plant-microbe interactions. This review discusses the potential impact and application of TA systems in plant-associated bacteria, guided by insights gained from animal-pathogenic model systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1146/annurev-phyto-080516-035559 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!