Self-assembled biomaterials are an important class of materials that can be injected and formed in situ. However, they often are not able to meet the mechanical properties necessary for many biological applications, losing mechanical properties at low strains. We synthesized hybrid hydrogels consisting of a poly(γ-glutamic acid) polymer network physically cross-linked via grafted self-assembling β-sheet peptides to provide non-covalent cross-linking through β-sheet assembly, reinforced with a polymer backbone to improve strain stability. By altering the β-sheet peptide graft density and concentration, we can tailor the mechanical properties of the hydrogels over an order of magnitude range of 10-200 kPa, which is in the region of many soft tissues. Also, due to the ability of the non-covalent β-sheet cross-links to reassemble, the hydrogels can self-heal after being strained to failure, in most cases recovering all of their original storage moduli. Using a combination of spectroscopic techniques, we were able to probe the secondary structure of the materials and verify the presence of β-sheets within the hybrid hydrogels. Since the polymer backbone requires less than a 15% functionalization of its repeating units with β-sheet peptides to form a hydrogel, it can easily be modified further to incorporate specific biological epitopes. This self-healing polymer-β-sheet peptide hybrid hydrogel with tailorable mechanical properties is a promising platform for future tissue-engineering scaffolds and biomedical applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5467180 | PMC |
http://dx.doi.org/10.1021/jacs.7b00528 | DOI Listing |
Nanotechnology
January 2025
Nanjing University of Posts and Telecommunications, Nanjing University of Posts and Telecommunications, Kuala Lumpur, Selangor, 50603, MALAYSIA.
Two-dimensional Transition Metal Dichalcogenides (2D TMDs) have garnered significant attention in the field of materials science due to their remarkable electronic and optoelectronic properties, including high carrier mobility and tunable band gaps. Despite the extensive research on various TMDs, there remains a notable gap in understanding the synthesis techniques and their implications for the practical application of monolayer tungsten disulfide (WS2) in optoelectronic devices. This gap is critical, as the successful integration of WS2 into commercial technologies hinges on the development of reliable synthesis methods that ensure high quality and uniformity of the material.
View Article and Find Full Text PDFActa Bioeng Biomech
June 2024
3School of Mechanical Engineering, Yanshan University, Hebei, China.
: This study aimed to explore how the microarchitectural features of lacunae and perilacunar zones impact the biomechanics of microdamage accumulation in cortical bone, crucial for understanding bone disorders' pathogenesis and developing preventive measures. : Utilizing the phase field finite element method, the study analyzed three bone unit models with varying microarchitecture: one without lacunae, one with lacunae and one including perilacunar zones, to assess their effects on cortical bone's biomechanical properties. : The presence of lacunae was found to increase microcrack initiation risk, acting as nucleation points and accelerating microcrack propagation.
View Article and Find Full Text PDFActa Bioeng Biomech
June 2024
2AGH University of Krakow, Faculty of Materials Science and Ceramics, Kraków, Poland.
Bacterial infections pose a serious threat to human health. For many years, there has been a search for materials that would inhibit their development. It was decided to take a closer look at various elastomeric materials with the addition of chitosan.
View Article and Find Full Text PDFActa Bioeng Biomech
June 2024
1School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China.
: Brain tissue immersed in cerebrospinal fluid often exhibits complex mechanical behaviour, especially the nonlinear stress- strain and rate-dependent responses. Despite extensive research into its material properties, the impact of solution environments on the mechanical behaviour of brain tissue remains limited. This knowledge gap affects the biofidelity of head modelling.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemical Engineering, Myongji University, Yongin 17058, Republic of Korea.
Liquid metals (LMs), i.e., metals and alloys that exist in a liquid state at room temperature, have recently attracted considerable attention owing to their electronic and rheological properties useful in various cutting-edge technologies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!