Background: Myocardial infarction (MI) is a major disease burden. Wild-type p53-induced phosphatase 1 (Wip1) has been studied extensively in the context of cancer and the regulation of different types of stem cells, but the role of Wip1 in cardiac adaptation to MI is unknown. We investigated the significance of Wip1 in a mouse model of MI.
Methods: The study began in June 2014 and was completed in July 2016. We compared Wip1-knockout (Wip1-KO) mice and wild-type (WT) mice to determine changes in cardiac function and survival in response to MI. The heart weight/body weight (HW/BW) ratio and cardiac function were measured before MI. Mouse MI was established by ligating the left anterior descending (LAD) coronary artery under 1.5% isoflurane anesthesia. After MI, survival of the mice was observed for 4 weeks. Cardiac function was examined by echocardiography. The HW/BW ratio was analyzed, and cardiac hypertrophy was measured by wheat germ agglutinin staining. Hematoxylin and eosin (H&E) staining was used to determine the infarct size. Gene expression of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) was assessed by quantitative real-time polymerase chain reaction (qPCR), and the levels of signal transducers and activators of transcription 3 (stat3) and phosphor-stat3 (p-stat3) were also analyzed by Western blotting. Kaplan-Meier survival analysis, log-rank test, unpaired t-test, and one-way analysis of variance (ANOVA) were used for statistical analyses.
Results: Wip1-KO mice had a marginally increased HW/BW ratio and slightly impaired cardiac function before LAD ligation. After MI, Wip1-deficient mice exhibited increased mortality (57.14% vs. 29.17%; n = 24 [WT], n = 35 [Wip1-KO], P< 0.05), increased cardiac hypertrophy (HW/BW ratio: 7 days: 7.25 ± 0.36 vs. 5.84 ± 0.18, n = 10, P< 0.01, and 4 weeks: 6.05 ± 0.17 vs. 5.87 ± 0.24, n = 10, P > 0.05; cross-sectional area: 7 days: 311.80 ± 8.29 vs. 268.90 ± 11.15, n = 6, P< 0.05, and 4 weeks: 308.80 ± 11.26 vs. 317.00 ± 13.55, n = 6, P > 0.05), and reduced cardiac function (ejection fraction: 7 days: 29.37 ± 1.38 vs. 34.72 ± 1.81, P< 0.05, and 4 weeks: 19.06 ± 2.07 vs. 26.37 ± 2.95, P< 0.05; fractional shortening: 7 days: 13.72 ± 0.71 vs. 16.50 ± 0.94, P< 0.05, and 4 weeks: 8.79 ± 1.00 vs. 12.48 ± 1.48, P< 0.05; n = 10 [WT], n = 15 [Wip1-KO]). H&E staining revealed a larger infarct size in Wip1-KO mice than in WT mice (34.79% ± 2.44% vs. 19.55% ± 1.48%, n = 6, P< 0.01). The expression of IL-6 and p-stat3 was downregulated in Wip1-KO mice (IL-6: 1.71 ± 0.27 vs. 4.46 ± 0.79, n = 6, P< 0.01; and p-stat3/stat3: 1.15 ± 0.15 vs. 1.97 ± 0.23, n = 6, P< 0.05).
Conclusion: The results suggest that Wip1 could protect the heart from MI-induced ischemic injury.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5455044 | PMC |
http://dx.doi.org/10.4103/0366-6999.206353 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
Department of Biomedical Sciences, Grand Valley State University, Allendale, MI 49401, USA.
Background: Diabetes mellitus is associated with morphological and functional impairment of the heart primarily due to lipid toxicity caused by increased fatty acid metabolism. Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) have been implicated in the metabolism of fatty acids in the liver and skeletal muscles. However, their role in the heart in diabetes remains unclear.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Cardiology, Affiliated Hospital of Jiangnan University, 214122 Wuxi, Jiangsu, China.
Background: Myocardial ischemia-reperfusion (I/R) injury refers to cell damage that occurs as a consequence of the restoration of blood circulation following reperfusion therapy for cardiovascular diseases, and it is a primary cause of myocardial infarction. The search for nove therapeutic targets in the context of I/R injury is currently a highly active area of research. p70 ribosomal S6 kinase (S6K1) plays an important role in I/R induced necrosis, although the specific mechanisms remain unclear.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, 530021 Nanning, Guangxi, China.
Background: Rheumatic heart disease (RHD), which is caused mainly by Group A Streptococcus, leads to fibrotic damage to heart valves. Recently, endothelial‒mesenchymal transition (EndMT), in which activin plays an important role, has been shown to be an important factor in RHD valvular injury. However, the mechanism of activin activity and EndMT in RHD valvular injury is not clear.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, 401336 Chongqing, China.
Background: Myocardial ischemia-reperfusion (I/R) injury and coronary microcirculation dysfunction (CMD) are observed in patients with myocardial infarction after vascular recanalization. The antianginal drug trimetazidine has been demonstrated to exert a protective effect in myocardial ischemia-reperfusion injury.
Objectives: This study aimed to investigate the role of trimetazidine in endothelial cell dysfunction caused by myocardial I/R injury and thus improve coronary microcirculation.
Front Biosci (Landmark Ed)
January 2025
School of Cardiovascular and Metabolic Medicine & Sciences, British Heart Foundation Centre of Research Excellence, King's College London, SE5 9NU London, UK.
Cardiovascular disease (CVD) is the most prevalent cause of mortality and morbidity in the Western world. A common underlying hallmark of CVD is the plaque-associated arterial thickening, termed atherosclerosis. Although the molecular mechanisms underlying the aetiology of atherosclerosis remain unknown, it is clear that both its development and progression are associated with significant changes in the pattern of DNA methylation within the vascular cell wall.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!