Single-junction photovoltaic devices exhibit a bottleneck in their efficiency due to incomplete or inefficient harvesting of photons in the low- or high-energy regions of the solar spectrum. Spectral converters can be used to convert solar photons into energies that are more effectively captured by the photovoltaic device through a photoluminescence process. Here, recent advances in the fields of luminescent solar concentration, luminescent downshifting, and upconversion are discussed. The focus is specifically on the role that materials science has to play in overcoming barriers in the optical performance in all spectral converters and on their successful integration with both established (e.g., c-Si, GaAs) and emerging (perovskite, organic, dye-sensitized) cell types. Current challenges and emerging research directions, which need to be addressed for the development of next-generation luminescent solar devices, are also discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.201606491DOI Listing

Publication Analysis

Top Keywords

spectral converters
12
luminescent solar
12
solar devices
8
solar
5
efficient spectral
4
converters materials
4
materials design
4
luminescent
4
design luminescent
4
devices single-junction
4

Similar Publications

Visible-Light-Fueled Polymerizations for 3D Printing.

Acc Chem Res

January 2025

Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States.

ConspectusLight-driven polymerizations and their application in 3D printing have revolutionized manufacturing across diverse sectors, from healthcare to fine arts. Despite the popularized notion that with 3D printing "imagination is the only limit", we and others in the scientific community have identified fundamental hurdles that restrict our capabilities in this space. Herein, we describe the group's efforts in developing photochemical systems that respond to nontraditional colors of light to elicit the rapid, spatiotemporally controlled formation of plastics.

View Article and Find Full Text PDF

Emotion recognition using multi-scale EEG features through graph convolutional attention network.

Neural Netw

December 2024

The school of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China. Electronic address:

Emotion recognition via electroencephalogram (EEG) signals holds significant promise across various domains, including the detection of emotions in patients with consciousness disorders, assisting in the diagnosis of depression, and assessing cognitive load. This process is critically important in the development and research of brain-computer interfaces, where precise and efficient recognition of emotions is paramount. In this work, we introduce a novel approach for emotion recognition employing multi-scale EEG features, denominated as the Dynamic Spatial-Spectral-Temporal Network (DSSTNet).

View Article and Find Full Text PDF

Obstructive sleep apnea (OSA) is widespread, under-recognized, and under-treated, impacting the health and quality of life for millions. The current gold standard for sleep apnea testing is based on the in-lab sleep study, which is costly, cumbersome, not readily available and represents a well-known roadblock to managing this huge societal burden. Assessment of neuromuscular function involved in the upper airway using electromyography (EMG) has shown potential to characterize and diagnose sleep apnea, while the development of transmembranous electromyography (tmEMG), a painless surface probe, has made this opportunity practical and highly feasible.

View Article and Find Full Text PDF

This study presents a generalized design strategy for novel terahertz-wave polarization space-division multiplexing meta-devices, functioning as multi-polarization generators, modulators, and analyzers. It introduces the spin-decoupled phase control method by combining gradient phase design with circular polarization multiplexing techniques, enabling exceptional flexibility in controlling the polarization directions and spatial distributions of multiple output beams. The meta-device M-4D is significantly demonstrated as proof of concept, which converts an incident linearly polarized wave into four beams with distinct polarization angles.

View Article and Find Full Text PDF

Red-light absorbing photoredox catalysts offer potential advantages for large-scale reactions, expanding the range of usable substrates and facilitating bio-orthogonal applications. While many red-light absorbing/emitting fluorophores have been developed recently, functional red-light absorbing photoredox catalysts are scarce. Many photoredox catalysts rely on long-lived triplet excited states (triplets), which can efficiently engage in single electron transfer (SET) reactions with substrates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!