Obtaining information on protein content while keeping their localization on tissue or organ is of importance in different domains to understand pathophysiological processes. There is increasing interest in studying the microenvironment and heterogeneity of tumors, which currently is difficult with existing proteomics techniques. The advent of new techniques, like MALDI Mass Spectrometry Imaging, made a significant progress in the last decade but is characterized by a number of inherent drawbacks. One of these is the limited identification of proteins. New alternative approaches such as spatially-resolved liquid microextraction have recently been proposed to overcome this limitation. In this chapter, we describe strategies using liquid microjunction to perform extraction of previously digested peptides or of intact proteins from tissue section in a localized manner.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4939-7051-3_6 | DOI Listing |
Small Methods
January 2025
Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland.
In situ monitoring is essential for catalytic process design, offering real-time insights into active structures and reactive intermediates. Electron paramagnetic resonance (EPR) spectroscopy excels at probing geometric and electronic properties of paramagnetic species during reactions. Yet, state-of-the-art liquid-phase EPR methods, like flat cells, require custom resonators, consume large amounts of reagents, and are unsuited for tracking initial kinetics or use with solid catalysts.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea.
Tumor-derived extracellular vesicle (tEV)-associated RNAs hold promise as diagnostic biomarkers, but their clinical use is hindered by the rarity of tEVs among nontumor EVs. Here, we present EV-CLIP, a highly sensitive droplet-based digital method for profiling EV RNA. EV-CLIP utilizes the fusion of EVs with charged liposomes (CLIPs) in a microfluidic chip.
View Article and Find Full Text PDFLab Chip
November 2024
School of Engineering, Cardiff University, The Parade, Cardiff, CF24 3AA, UK.
Heliyon
September 2024
Cancer Epigenetic Biology and Therapeutics Laboratory, Children's Cancer Institute, Lowy Cancer Centre, Kensington, NSW, Australia.
Single-cell transcriptomics has emerged as the preferred tool to define cell identity through the analysis of gene expression signatures. However, there are limited studies that have comprehensively compared the performance of different scRNAseq systems in complex tissues. Here, we present a systematic comparison of two well-established high throughput 3'-scRNAseq platforms: 10× Chromium and BD Rhapsody, using tumours that present high cell diversity.
View Article and Find Full Text PDFOphthalmol Sci
April 2024
Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan.
Purpose: Current therapies for proliferative diabetic retinopathy (PDR) do not specifically target VEGF-independent, cell-type-specific processes that lead to vision loss, such as inflammatory pathways. This study aimed to identify targetable cell types and corresponding signaling pathways by elucidating the single-cell landscape of the vitreous of patients with PDR.
Design: Case series.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!