Soil salinity, being a part of natural ecosystems, is an increasing problem in agricultural soils throughout the world. OS261 has already been proved to be an effective bio-inoculant for enhancing cold stress tolerance in plants, however, its effect on salt stress tolerance is unknown. The main aim of the present study was to elucidate OS261 mediated salt stress tolerance in red pepper. The plants were exposed to a salt stress using NaCl at the concentrations of 50, 100, and 150 mM after 12 days of transplantation, while plant growth and enzyme activity were estimated 50 days after sowing. The height in . OS261 inoculated plants was significantly increased by 19.05, 34.35, 57.25, and 61.07% compared to un-inoculated controls at 0, 50, 100, and 150 mM of NaCl concentrations, respectively, under greenhouse conditions. The dry biomass of the plants increased by 31.97, 37.47, 62.67, and 67.84% under 0, 50, 100, and 150 mM of NaCl concentrations, respectively. A high emission of ethylene was observed in un-inoculated red pepper plants under salinity stress. . OS261 inoculation significantly reduced ethylene emission by 20.03, 18.01, and 20.07% at 50, 100, and 150 mM of NaCl concentrations, respectively. Furthermore, the activity of antioxidant enzymes (ascorbate peroxidase, superoxide dismutase, and catalase) also varied in the inoculated red pepper plants. Salt stress resistance in the bacterized plants was evident from the improved antioxidant activity in leaf tissues and the decreased hydrogen ion concentration. Thus, we conclude that . OS261 possesses stress mitigating property which can enhance plant growth under high soil salinity by reducing the emission of ethylene and regulating antioxidant enzymes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5415621PMC
http://dx.doi.org/10.3389/fpls.2017.00705DOI Listing

Publication Analysis

Top Keywords

red pepper
16
salt stress
16
nacl concentrations
16
100 150
16
plant growth
12
stress tolerance
12
pepper plants
12
150 nacl
12
soil salinity
8
plants salt
8

Similar Publications

Nanoparticles enhance agricultural applications with their bioactivity, bioavailability, and reactivity. Selenium mitigates the adverse effects of salinity on plant growth, boosting antioxidant defense, metabolism, and resilience to abiotic stress. Our study applied selenium nanoparticles to mitigate salinity-induced damage and support plant growth.

View Article and Find Full Text PDF

Transposon proliferation drives genome architecture and regulatory evolution in wild and domesticated peppers.

Nat Plants

January 2025

State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China.

Pepper (Capsicum spp.) is a widely consumed vegetable with exceptionally large genomes in Solanaceae, yet its genomic evolutionary history remains largely unknown. Here we present 11 high-quality Capsicum genome assemblies, including two gap-free genomes, covering four wild and all five domesticated pepper species.

View Article and Find Full Text PDF

In agriculture, promptly and accurately identifying leaf diseases is crucial for sustainable crop production. To address this requirement, this research introduces a hybrid deep learning model that combines the visual geometric group version 19 (VGG19) architecture features with the transformer encoder blocks. This fusion enables the accurate and précised real-time classification of leaf diseases affecting grape, bell pepper, and tomato plants.

View Article and Find Full Text PDF

This study, conducted between June 2022 and March 2023 in Dhaka, examined prevalence in 874 samples from vegetables, vegetable wash water, and hand swabs from vendors during summer and winter. Of the total samples, 782 (89.50%) tested positive for , with 95.

View Article and Find Full Text PDF

A comprehensive review on sustainable strategies for valorization of pepper waste and their potential application.

Compr Rev Food Sci Food Saf

January 2025

Department of Biotechnology, Manipur University, Canchipur, Imphal, Manipur, India.

Pepper is an economically important crop grown worldwide for consumption as a vegetable and spice. Much waste, including crop plant waste, seeds, stalks, placenta, peels, and other processing byproducts, is generated by consumers during pepper crop production, processing, retail, and households. These peppers byproducts contain numerous bioactive compounds that can be used as ingredients for developing functional foods, nutraceuticals, and other food industries.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!