Animal Models for Tuberculosis in Translational and Precision Medicine.

Front Microbiol

Key Laboratory of Human Disease Comparative Medicine, Ministry of HealthBeijing, China.

Published: May 2017

Tuberculosis (TB) is a health threat to the global population. Anti-TB drugs and vaccines are key approaches for TB prevention and control. TB animal models are basic tools for developing biomarkers of diagnosis, drugs for therapy, vaccines for prevention and researching pathogenic mechanisms for identification of targets; thus, they serve as the cornerstone of comparative medicine, translational medicine, and precision medicine. In this review, we discuss the current use of TB animal models and their problems, as well as offering perspectives on the future of these models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5415616PMC
http://dx.doi.org/10.3389/fmicb.2017.00717DOI Listing

Publication Analysis

Top Keywords

animal models
12
precision medicine
8
models tuberculosis
4
tuberculosis translational
4
translational precision
4
medicine
4
medicine tuberculosis
4
tuberculosis health
4
health threat
4
threat global
4

Similar Publications

Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that is primarily known for causing severe joint and muscle symptoms, but its pathological effects have extended beyond these tissues. In this study, we conducted a comprehensive proteomic analysis across various organs in rodent and nonhuman primate models to investigate CHIKV's impact on organs beyond joints and muscles and to identify key host factors involved in its pathogenesis. Our findings reveal significant species-specific similarities and differences in immune responses and metabolic regulation, with proteins like Interferon-Stimulated Gene 15 (ISG15) and Retinoic Acid-Inducible Gene I (RIG-I) playing crucial roles in the anti-CHIKV defense.

View Article and Find Full Text PDF

Bone marrow stimulation treatment by bone marrow stromal cells (BMSCs) released from the bone medullary cavity and differentiated into cartilage via microfracture surgery is a frequently employed technique for treating articular cartilage injuries, yet the treatment presents a main drawback of poor cartilage regeneration in the elderly. Prior research indicated that aging could decrease the stemness capacity of BMSCs, thus we made a hypothesis that increasing old BMSCs (OBMSCs) stemness might improve the results of microfracture in the elderly. First, we investigated the correlation between microfracture outcomes and BMSCs stemness using clinical data and animal experiments.

View Article and Find Full Text PDF

Introduction Fournier's gangrene (FG) is a rapidly progressing necrotizing fasciitis. The Fournier's Gangrene Severity Index (FGSI), in conjunction with the Charlson Comorbidity Index (CCI), has been used as a mortality predictor during hospitalization. Patients with diabetes have also been shown to be at an increased risk for the development of FG.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!