MotomiRs: miRNAs in Motor Neuron Function and Disease.

Front Mol Neurosci

Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western UniversityLondon, ON, Canada.

Published: May 2017

MiRNAs are key regulators of the mammalian transcriptome that have been increasingly linked to degenerative diseases of the motor neurons. Although many of the miRNAs currently incriminated as participants in the pathogenesis of these diseases are also important to the normal development and function of motor neurons, at present there is no knowledge of the complete miRNA profile of motor neurons. In this review, we examine the current understanding with respect to miRNAs that are specifically required for motor neuron development, function and viability, and provide evidence that these should be considered as a functional network of miRNAs which we have collectively termed MotomiRs. We will also summarize those MotomiRs currently known to be associated with both amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA), and discuss their potential use as biomarkers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5415563PMC
http://dx.doi.org/10.3389/fnmol.2017.00127DOI Listing

Publication Analysis

Top Keywords

motor neurons
12
motor neuron
8
development function
8
motor
5
motomirs mirnas
4
mirnas motor
4
neuron function
4
function disease
4
mirnas
4
disease mirnas
4

Similar Publications

Guillain-Barré syndrome following falciparum malaria infection: a case report.

BMC Neurol

January 2025

Department of Radiology, School of Medicine, College of Medicine and Health Sciences, Mizan-Tepi University, Mizan-Teferi, Ethiopia.

Background: Malaria is an infectious disease caused by Plasmodium parasites, transmitted to humans by infected female Anopheles mosquitoes. Five Plasmodium species infect humans: P. vivax, P.

View Article and Find Full Text PDF

The neuromuscular junction (NMJ) is essential for transmitting signals from motor neurons (MNs) to skeletal muscles (SKMs), and its dysfunction can lead to severe motor disorders. However, our understanding of the NMJ is limited by the absence of accurate human models. Although human induced pluripotent stem cell (iPSC)-derived models have advanced NMJ research, their application is constrained by challenges such as limited differentiation efficiency, lengthy generation times, and cryopreservation difficulties.

View Article and Find Full Text PDF

Local cortical structure pattern and genetic links in schizophrenia: An MRI and CRISPR/Cas9 study.

Prog Neuropsychopharmacol Biol Psychiatry

January 2025

Institute of Brain Science, National Yang-Ming Chiao Tung University, Taipei 11221, Taiwan; Brain Research Center, National Yang-Ming Chiao Tung University, Taipei 11221, Taiwan; Digital Medicine and Smart Healthcare Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan. Electronic address:

While the etiology of schizophrenia (SZ) remains elusive, its diverse phenotypes suggest the involvement of distinct functional cortical areas, and the heritability of SZ implies the underlying genetic factors. This study aimed to integrate imaging and molecular analyses to elucidate the genetic underpinnings of SZ. We investigated the local cortical structural pattern changes in Brodmann areas (BAs) by calculating the cortical structural pattern index (SPI) using magnetic resonance imaging analysis from 194 individuals with SZ and 330 controls.

View Article and Find Full Text PDF

The nucleus tractus solitarius (NTS) contains neurons that relay sensory swallowing commands information from the oropharyngeal cavity and swallowing premotor neurons of the dorsal swallowing group (DSG). However, the spatio-temporal dynamics of the interplay between the sensory relay and the DSG is not well understood. Here, we employed fluorescence imaging after microinjection of the calcium indicator into the NTS in an arterially perfused brainstem preparation of rat (n = 8) to investigate neuronal population activity in the NTS in response to superior laryngeal nerve (SLN) stimulation.

View Article and Find Full Text PDF

Background: Observation, execution, and imitation of target actions based on mirror neuron network (MNN) have become common physiotherapy strategies. Electrical stimulation (ES) is a common intervention to improve muscle strength and motor control in rehabilitation treatments. It is possible to enhance MNN's activation by combining motor execution (ME) and motor imitation (MI) with ES simultaneously.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!