Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Pulmonary arterial hypertension (PAH) is a rapidly degenerating and devastating disease of increased pulmonary vessel resistance leading to right heart failure. Palliative modalities remain limited despite recent endeavors to investigate the mechanisms underlying increased pulmonary vascular resistance (PVR), i.e. aberrant vascular remodeling and occlusion. However, little is known of the molecular mechanisms responsible for endothelial proliferation, a root cause of PAH-associated vascular remodeling. Lung tissue specimens from PAH and non-PAH patients and hypoxia-exposed human pulmonary artery endothelial cells (ECs) (HPAEC) were assessed for mRNA and protein expression. Reactive oxygen species (ROS) were measured using cytochrome and Amplex Red assays. Findings demonstrate for the first time an up-regulation of NADPH oxidase 1 (Nox1) at the transcript and protein level in resistance vessels from PAH compared with non-PAH patients. This coincided with an increase in ROS production and expression of bone morphogenetic protein (BMP) antagonist Gremlin1 (Grem1). In HPAEC, hypoxia induced Nox1 subunit expression, assembly, and oxidase activity leading to elevation in sonic hedgehog (SHH) and Grem1 expression. Nox1 gene silencing abrogated this cascade. Moreover, loss of either Nox1, SHH or Grem1 attenuated hypoxia-induced EC proliferation. Together, these data support a Nox1-SHH-Grem1 signaling axis in pulmonary vascular endothelium that is likely to contribute to pathophysiological endothelial proliferation and the progression of PAH. These findings also support targeting of Nox1 as a viable therapeutic option to combat PAH.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5705051 | PMC |
http://dx.doi.org/10.1042/CS20160812 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!