Bragg coherent diffractive imaging of single-grain defect dynamics in polycrystalline films.

Science

Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, USA.

Published: May 2017

Polycrystalline material properties depend on the distribution and interactions of their crystalline grains. In particular, grain boundaries and defects are crucial in determining their response to external stimuli. A long-standing challenge is thus to observe individual grains, defects, and strain dynamics inside functional materials. Here we report a technique capable of revealing grain heterogeneity, including strain fields and individual dislocations, that can be used under operando conditions in reactive environments: grain Bragg coherent diffractive imaging (gBCDI). Using a polycrystalline gold thin film subjected to heating, we show how gBCDI resolves grain boundary and dislocation dynamics in individual grains in three-dimensional detail with 10-nanometer spatial and subangstrom displacement field resolution. These results pave the way for understanding polycrystalline material response under external stimuli and, ideally, engineering particular functions.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.aam6168DOI Listing

Publication Analysis

Top Keywords

bragg coherent
8
coherent diffractive
8
diffractive imaging
8
polycrystalline material
8
response external
8
external stimuli
8
individual grains
8
imaging single-grain
4
single-grain defect
4
defect dynamics
4

Similar Publications

Discontinuous solid-solid phase transformations play a pivotal role in determining the properties of rechargeable battery electrodes. By leveraging operando Bragg Coherent Diffractive Imaging (BCDI), we investigate the discontinuous phase transformation in LiNiMnO within an operational Li metal coin cell. Throughout Li-intercalation, we directly observe the nucleation and growth of the Li-rich phase within the initially charged Li-poor phase in a 500 nm particle.

View Article and Find Full Text PDF

We report the use of streaming data interfaces to perform fully online data processing for serial crystallography experiments, without storing intermediate data on disk. The system produces Bragg reflection intensity measurements suitable for scaling and merging, with a latency of less than 1 s per frame. Our system uses the CrystFEL software in combination with the ASAP::O data framework.

View Article and Find Full Text PDF

Multiferroic materials that exhibit interacting and coexisting properties, like ferroelectricity and ferromagnetism, possess significant potential in the development of novel technologies that can be controlled through the application of external fields. They also exhibit varying regions of polarity, known as domains, with the interfaces that separate the domains referred to as domain walls. In this study, using three-dimensional (3D) bragg coherent diffractive imaging (BCDI), we investigate the dynamics of multiferroic domain walls in a single hexagonal dysprosium manganite (h-DyMnO ) nanocrystal under varying applied electric field.

View Article and Find Full Text PDF

Optics-Enabled Highly Scalable Inverter for Multi-Valued Logic.

Laser Photon Rev

December 2024

Énergie, Matériaux et Télécommunications Institut National de la Recherche Scientifique Montréal H5A 1K6 Canada.

The rapid advancements in machine learning have exacerbated the interconnect bottleneck inherent in binary logic-based computing architectures. An interesting approach to tackle this problem involves increasing the information density per interconnect, i.e.

View Article and Find Full Text PDF

Light-matter interaction at the nanoscale in magnetic alloys and heterostructures is a topic of intense research in view of potential applications in high-density magnetic recording. While the element-specific dynamics of electron spins is directly accessible to resonant x-ray pulses with femtosecond time structure, the possible element-specific atomic motion remains largely unexplored. We use ultrafast electron diffraction (UED) to probe the temporal evolution of lattice Bragg peaks of FePt nanoparticles embedded in a carbon matrix following excitation by an optical femtosecond laser pulse.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!