Anti-Inflammatory Effects of OxPAPC Involve Endothelial Cell-Mediated Generation of LXA4.

Circ Res

From the Department of Medicine, Lung Injury Center, Section of Pulmonary and Critical Medicine, University of Chicago, IL (Y.K., N.Z., O.O., T.A., Y.T., F.M., N.S., A.A.B., K.G.B.); National Jewish Health, Denver, CO (E.B.); National Cancer Institute at Frederick, MD (J.M.W.); and Institute of Pharmaceutical Sciences, University of Graz, Austria (V.N.B.).

Published: July 2017

Rationale: Oxidation of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (OxPAPC) generates a group of bioactive oxidized phospholipid products with a broad range of biological activities. Barrier-enhancing and anti-inflammatory effects of OxPAPC on pulmonary endothelial cells are critical for prevention of acute lung injury caused by bacterial pathogens or excessive mechanical ventilation. Anti-inflammatory properties of OxPAPC are associated with its antagonistic effects on Toll-like receptors and suppression of RhoA GTPase signaling.

Objective: Because OxPAPC exhibits long-lasting anti-inflammatory and lung-protective effects even after single administration in vivo, we tested the hypothesis that these effects may be mediated by additional mechanisms, such as OxPAPC-dependent production of anti-inflammatory and proresolving lipid mediator, lipoxin A4 (LXA4).

Methods And Results: Mass spectrometry and ELISA assays detected significant accumulation of LXA4 in the lungs of OxPAPC-treated mice and in conditioned medium of OxPAPC-exposed pulmonary endothelial cells. Administration of LXA4 reproduced anti-inflammatory effect of OxPAPC against tumor necrosis factor-α in vitro and in the animal model of lipopolysaccharide-induced lung injury. The potent barrier-protective and anti-inflammatory effects of OxPAPC against tumor necrosis factor-α and lipopolysaccharide challenge were suppressed in human pulmonary endothelial cells with small interfering RNA-induced knockdown of LXA4 formyl peptide receptor-2 (FPR2/ALX) and in mFPR2 (mouse formyl peptide receptor 2) mice lacking the mouse homolog of human FPR2/ALX.

Conclusions: This is the first demonstration that inflammation- and injury-associated phospholipid oxidation triggers production of anti-inflammatory and proresolution molecules, such as LXA4. This lipid mediator switch represents a novel mechanism of OxPAPC-assisted recovery of inflamed lung endothelium.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5886749PMC
http://dx.doi.org/10.1161/CIRCRESAHA.116.310308DOI Listing

Publication Analysis

Top Keywords

anti-inflammatory effects
12
effects oxpapc
12
pulmonary endothelial
12
endothelial cells
12
anti-inflammatory
8
lung injury
8
production anti-inflammatory
8
lipid mediator
8
oxpapc tumor
8
tumor necrosis
8

Similar Publications

Purpose: Inflammatory processes have been involved in diabetic retinopathy (DR). Interleukin (IL)-17A, a pro-inflammatory cytokine, is associated with DR occurrence and development. However, mechanisms underlying the IL-17A impact on DR need further investigations.

View Article and Find Full Text PDF

The opioid crisis has been an issue in the United States since the mid-1990s, claiming numerous lives and presenting a significant challenge to health care clinicians. Various preoperative, intraoperative, and postoperative strategies aimed at reducing opioid consumption can be used by orthopaedic surgeons to help minimize this crisis. Preoperative screening tools can help identify patients at risk for prolonged opioid use, allowing for tailored interventions and counseling.

View Article and Find Full Text PDF

Multimodal analgesia and anesthesia have become the gold standard in total joint arthroplasty to reduce postoperative pain and opioid consumption and minimize complications associated with opioid use. There are several elements in an effective multimodal protocol, including oral medications, periarticular injection, regional nerve blocks, and spinal and general anesthesia. Many nonopioid medications are often used, such as acetaminophen and NSAIDs.

View Article and Find Full Text PDF

The present study aimed to unveil the gastroprotective potential of Vaccinium macrocarpon (VM) extract and its mechanism of action against indomethacin (INDO)-induced gastric ulcers in rats. To achieve this goal, rats were pretreated with either omeprazole (20 mg/kg) or VM (100 mg/kg) orally for 14 consecutive days. Gastric tissue samples were collected and various parameters were evaluated to understand the mechanism of VM's action, including the levels of superoxide dismutase, malondialdehyde, glutathione, CAT and transforming growth factor beta (TGF-β), as well as the mRNA expression levels of tumour necrosis factor alpha, interleukin 1 beta, nuclear factor kappa B (NF-κB) and inhibitor kappa B (IκB).

View Article and Find Full Text PDF

Multifunctional DNA nanomaterials: a new frontier in rheumatoid arthritis diagnosis and treatment.

Nanoscale

January 2025

State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.

Rheumatoid arthritis (RA) remains a challenging autoimmune disease due to its complex and heterogeneous pathophysiology, which complicates therapeutic and diagnostic efforts. Advances in DNA nanotechnology have introduced DNA nanomaterials as promising tools to overcome these barriers. This review focuses on three primary categories of DNA nanomaterials applied in RA: DNA nanostructures, DNA aptamers, and DNA-modified nanoparticles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!