Characterization of new crystalline forms of hydroxyprogesterone caproate.

Int J Pharm

The Structure Factory, LLC., 7 Larkin Rd, Medford, MA, 02155, USA. Electronic address:

Published: July 2017

A systematic polymorph screening process was conducted on the steroid hydroxyprogesterone caproate, which had only one previously described orthorhombic crystalline form (A), in order to fully elucidate its solid state properties. Cooling, anti-solvent and evaporative techniques largely reproduced the same polymorph, but slurries in various solvents over two days produced a new triclinic form (B). Experiments at different temperatures in ethyl acetate or isopropyl alcohol confirmed this was an enantiotropic system with a transition temperature of approximately 30°C. DSC was used to confirm the transition of Form B to Form A below the melting point. Form B was the thermodynamically stable form at room temperature, and 8% less soluble in a non-aqueous solvent mixture. In viscous solvents used commercially to dissolve the oil-soluble steroid for injection, solutions near the solubility limit can remain supersaturated after exposure to cooler temperatures for months. In resolving the crystalline structure of Form A, a third conformational polymorph was detected that exists only at -133 to -143°C; this monoclinic form was designated Form C, and converts back to Form A upon warming to room temperature. These studies have increased the understanding of this drug and how the polymorphs may affect its physical stability in different dosage forms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2017.05.031DOI Listing

Publication Analysis

Top Keywords

form
10
hydroxyprogesterone caproate
8
room temperature
8
characterization crystalline
4
crystalline forms
4
forms hydroxyprogesterone
4
caproate systematic
4
systematic polymorph
4
polymorph screening
4
screening process
4

Similar Publications

Ferguson Plot Analysis of Chaperone ClpB from Moderate Halophile.

Protein J

January 2025

Alliance Protein Laboratories, 13380 Pantera Road, San Diego, CA, 92130, USA.

The Ferguson plot is a simple method for determining the molecular weight of native proteins and their complexes. In this study, we tested the validity of the Ferguson plot based on agarose native gel electrophoresis using multimeric chaperone protein, ClpB, derived from a moderate halophile that forms a native hexamer. The Ferguson plot showed a single band with a molecular weight of 1,500 kDa, approximately twice the size of the native hexamer.

View Article and Find Full Text PDF

Donor C1 Group KIR-ligand inferiority is linked to increased mortality in haploidentical hematopoietic stem cell transplantation with post-transplant cyclophosphamide.

Cytotherapy

December 2024

Department of Internal Medicine I: Hematology with Stem Cell Transplantation, Hemostaseology and Medical Oncology, Ordensklinikum Linz-Elisabethinen, Linz, Austria; Medical Faculty, Johannes Kepler University, Linz, Austria.

Background Aims: In HLA-identical hematopoietic stem cell transplantation (HSCT), HLA-C1 group killer cell immunoglobulin-like receptor (KIR) ligands have been linked to graft-versus-host disease, whereas C2 homozygosity was associated with increased relapses. The differential impact of the recipients versus the donor's HLA-C KIR ligands cannot be determined in HLA-identical HSCT but may be elucidated in the haploidentical setting, in which HLA-C (including the HLA-C KIR ligand group) mismatching is frequently present.

Methods: We retrospectively investigated the effect of recipient versus donor C1 ligand content on survival and complications in post-transplant cyclophosphamide (PTCy)-based haploidentical HSCT (n = 170).

View Article and Find Full Text PDF

Purpose: Current technologies to define the zone of acute peripheral nerve injury intraoperatively are limited by surgical experience, time, cumbersome electrodiagnostic equipment, and interpreter reliability. In this pilot study, we evaluated a real-time, label-free optical technique for intraoperative nerve injury imaging. We hypothesize that fluorescence lifetime imaging (FLIm) will detect a difference between the time-resolved fluorescence signatures for acute crush injuries versus uninjured segments of peripheral nerves in sheep.

View Article and Find Full Text PDF

A new twofold interpenetrated 3D metal-organic framework (MOF), namely, poly[[μ-aqua-diaqua{μ-2,2'-[terephthaloylbis(azanediyl)]diacetato}barium(II)] dihydrate], {[Ba(CHNO)(HO)]·2HO}, (I), has been assembled through a combination of the reaction of 2,2'-[terephthaloylbis(azanediyl)]diacetic acid (TPBA, HL) with barium hydroxide and crystallization at low temperature. In the crystal structure of (I), the nine-coordinated Ba ions are bridged by two μ-aqua ligands and two carboxylate μ-O atoms to form a 1D loop-like Ba-O chain, which, together with the other two coordinated water molecules and μ-carboxylate groups, produces a rod-like secondary building unit (SBU). The resultant 1D polynuclear SBUs are further extended into a 3D MOF via the terephthalamide moiety of the ligand as a spacer.

View Article and Find Full Text PDF

Migrasome formation is initiated preferentially in tubular junctions by membrane tension.

Biophys J

January 2025

Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel. Electronic address:

Migrasomes, the vesicle-like membrane micro-structures, arise on the retraction fibers (RFs), the branched nano-tubules pulled out of cell plasma membranes during cell migration and shaped by membrane tension. Migrasomes form in two steps: a local RF bulging is followed by a protein-dependent stabilization of the emerging spherical bulge. Here we addressed theoretically and experimentally the previously unexplored mechanism of bulging of membrane tubular systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!