The aim of this work was to prepare and test different pharmaceutical formulations in respect of their potential in relieving dry mouth symptom. Since many of the products available on the market provide only temporary relief to the patients, there is need for new formulations able to retain on the oral mucosa. The prolonged moisture protection could be achieved by combining mucoadhesive materials, such as polymers containing hydrogen bonding groups, with vesicles capable of releasing hydration medium from the inner compartment. In this study three different types of liposomes (positively, negatively and neutrally charged) were coated with five different types of polymers: low-methoxylated pectin (LM-pectin), high-methoxylated pectin (HM-pectin), alginate, chitosan and hydrophobically modified ethyl hydroxyethyl cellulose (HM-EHEC). The particle size and the zeta potential of the obtained carriers were tested by measuring dynamic light scattering (DLS) and electrophoretic mobility. Later on, selected positively charged liposomes were deposited on a negatively charged mica surface and depicted by atomic force microscopy (AFM). The water sorption properties of polymers, uncoated liposomes and polymer-coated liposomes were studied by the means of dynamic vapor sorption (DVS). The experiments were performed within the relative humidity range RH=95-0-95%, at 35°C. It was found that coating the liposomes with polymers significantly increased the water sorption capacity of the formulations, making them an attractive choice for hydration of the oral mucosa.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2017.05.032 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!