Although radiotherapy is a highly effective treatment for abdominal or pelvic cancer patients, it can increase the incidence of severe gastrointestinal (GI) toxicity. As an intestinal growth factor, glucagon-like peptide 2 (GLP-2) has been shown to improve the preclinical models of both short bowel syndrome and inflammatory bowel disease by stimulating intestinal growth. Teduglutide ([Gly]GLP-2), a recombinant human GLP-2 variant, has a prolonged half-life and stability as compared to the native GLP-2 peptide, but still requires daily application in the clinic. Here, we designed and prepared a new degradation-resistant GLP-2 analogue dimer, designated GLP-2②, with biotechnological techniques. The purity of GLP-2②reached 97% after ammonium sulphate precipitation and anion exchange chromatography purification, and the purification process was simple and cost-effective. We next confirmed that the GLP-2② exhibited enhanced activities compared with [Gly]GLP-2, the long-acting, degradation-resistant analogue. Notably, GLP-2② offers a pharmacokinetic and therapeutic advantage in the treatment of radiation-induced intestinal injury over [Gly]GLP-2. We further demonstrated that GLP-2② rapidly activates divergent intracellular signaling pathways involved in cell survival and apoptosis. Taken together, our data revealed a potential novel and safe peptide drug for limiting the adverse effect of radiotherapy on the gastrointestinal system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jconrel.2017.05.020 | DOI Listing |
Life Sci
January 2025
Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin 300192, China.
As a common side effect of radiotherapy, radiation-induced intestinal injury (RIII) greatly affects the prognosis of patients and the efficacy of radiotherapy. Current therapeutic strategies for RIII are still very limited. Thus, the identification of effective radioprotective agents is of great importance.
View Article and Find Full Text PDFAging (Albany NY)
January 2025
Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA.
Exposure to ionizing radiation (IR), both low-LET (e.g., X-rays, γ rays) and high-LET (e.
View Article and Find Full Text PDFInt Immunopharmacol
December 2024
Changchun University of Chinese Medicine, Changchun, China; Department of Urology, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China. Electronic address:
Radiation enteritis (RE) is one of the major side effects of radiotherapy. So far, there are no effective drugs for preventing the disease process. Icariside II (ICS II) is a highly efficient monomer compound extracted and purified from the classic Chinese medicinal herb Epimedium.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Beijing Institute of Radiation Medicine, Beijing 100850, China. Electronic address:
Ionizing radiation-induced injury often occurs in nuclear accidents or large-dose radiotherapy, leading to acute radiation syndromes characterized by hematopoietic and gastrointestinal injuries even to death. However, current radioprotective drugs are only used in hospitals with unavoidable side effects. Here, we heated the aqueous solution of inulin, a polysaccharide dietary fiber, forming colon-retentive gel as a radiation protector in radiotherapy.
View Article and Find Full Text PDFCell Mol Biol Lett
December 2024
Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China.
Background: Radiotherapy for pelvic malignant tumors inevitably causes intestinal tissue damage. The regeneration of intestinal epithelium after radiation injury relies mainly on crypt fission. However, little is known about the regulatory mechanisms of crypt fission events.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!