Correlates of sleep quality in midlife and beyond: a machine learning analysis.

Sleep Med

Department of Psychiatry and Behavioral Sciences, Stanford Center for Sleep Sciences and Medicine, Stanford University, Stanford, CA 94305, USA; Mental Illness Research Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA. Electronic address:

Published: June 2017

Objectives: In older adults, traditional metrics derived from polysomnography (PSG) are not well correlated with subjective sleep quality. Little is known about whether the association between PSG and subjective sleep quality changes with age, or whether quantitative electroencephalography (qEEG) is associated with sleep quality. Therefore, we examined the relationship between subjective sleep quality and objective sleep characteristics (standard PSG and qEEG) across middle to older adulthood.

Methods: Using cross-sectional analyses of 3173 community-dwelling men and women aged between 39 and 90 participating in the Sleep Heart Health Study, we examined the relationship between a morning rating of the prior night's sleep quality (sleep depth and restfulness) and polysomnographic, and qEEG descriptors of that single night of sleep, along with clinical and demographic measures. Multivariable models were constructed using two machine learning methods, namely lasso penalized regressions and random forests.

Results: Little variance was explained across models. Greater objective sleep efficiency, reduced wake after sleep onset, and fewer sleep-to-wake stage transitions were each associated with higher sleep quality; qEEG variables contributed little explanatory power. The oldest adults reported the highest sleep quality even as objective sleep deteriorated such that they would rate their sleep better, given the same level of sleep efficiency. Despite this, there were no major differences in the predictors of subjective sleep across the age span.

Conclusion: Standard metrics derived from PSG, including qEEG, contribute little to explaining subjective sleep quality in middle-aged to older adults. The objective correlates of subjective sleep quality do not appear to systematically change with age despite a change in the relationship between subjective sleep quality and objective sleep efficiency.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5456454PMC
http://dx.doi.org/10.1016/j.sleep.2017.03.004DOI Listing

Publication Analysis

Top Keywords

sleep quality
44
subjective sleep
28
sleep
21
objective sleep
16
quality objective
12
sleep efficiency
12
quality
11
machine learning
8
older adults
8
metrics derived
8

Similar Publications

The aim of this study is to investigate the impact of using probiotics with strains related to dopamine and gamma-aminobutyric acid production on clinical features of autism spectrum disorder (ASD) and/or attention deficit/hyperactivity disorder (ADHD). This randomized, controlled trial involved 38 children with ADHD and 42 children with ASD, aged 5-16 years, who received probiotics (Lactiplantibacillus plantarum and Levilactobacillus brevis 109/cfu/daily) or placebo for 12 weeks. Parent-reported symptoms were assessed using Conners' 3rd-Ed and the Social Responsiveness Scale Test, 2nd-Ed (SRS-2), and children completed the Conners Continuous Performance Test, 3rd-Ed (CPT 3) or Conners Kiddie CPT, 2nd-Ed (K-CPT 2).

View Article and Find Full Text PDF

Background: After breast cancer (BC), women may face other severe symptoms such as sleep problems. The use of simple, fast, and reliable scales is necessary in the clinic to improve patient benefits, and sleep is an important aspect to be addressed.

Objective: This study was conducted to adapt and validate the Spanish version of the satisfaction, alertness, timing, efficiency, and duration (SATED) scale for measuring sleep health in women who have completed treatment for BC in Spain (SATED-BC).

View Article and Find Full Text PDF

The main aim of the present study was to uncover multivariate relationships between sleep quantity and quality using principal component analysis (PCA) in professional female soccer players. A second aim was to examine the extent to which objective sleep quantity and quality variables can discriminate between perceived sleep. Ten objective sleep variables from the multisensory sleep-tracker were analyzed.

View Article and Find Full Text PDF

Empowering the Sports Scientist with Artificial Intelligence in Training, Performance, and Health Management.

Sensors (Basel)

December 2024

Research Center in Sports Sciences, Health Sciences and Human Development, CIDESD, CreativeLab Research Community, 5000-801 Vila Real, Portugal.

Artificial Intelligence (AI) is transforming the field of sports science by providing unprecedented insights and tools that enhance training, performance, and health management. This work examines how AI is advancing the role of sports scientists, particularly in team sports environments, by improving training load management, sports performance, and player well-being. It explores key dimensions such as load optimization, injury prevention and return-to-play, sports performance, talent identification and scouting, off-training behavior, sleep quality, and menstrual cycle management.

View Article and Find Full Text PDF

Mattress firmness is a critical factor influencing sleep quality. This study investigates the effects of time, mattress firmness, and anthropometric parameters on surface electromyographic (sEMG) activity during supine rest. Eleven participants were analyzed, and the values for lower back sEMG on three mattresses were measured as 8.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!