Understanding the chemistry of wine oxidation requires the accurate and sensitive quantitative determination of the most important molecular species which SO can form. An analytical strategy based in three independent static headspace GC-MS determinations is proposed in order to obtain information about the total, nominally free and truly free levels of SO. Nominally free forms are directly determined after sample acidulation, total forms require the previous incubation at 100°C, and truly free forms are determined after preconcentration of the headspace of the undisturbed sample in an alkaline solution. The two first determinations provide results equivalent to those reported by the aeration-oxidation (A-O) method, with lower limits of detection (1mgL) and better repeatabilities (<4.0%). Results from the analysis of different wines revealed that levels of nominally free are systematically in excess than those of truly free SO, which suggests that free SO determined by any method using previous acidulation includes at least two different species of SO, which may have different antioxidant behavior.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chroma.2017.05.012 | DOI Listing |
HGG Adv
January 2025
Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada; Department of Human Genetics, McGill University, Montréal, Québec, Canada; 5 Prime Sciences Inc, Montréal, Quebec, Canada; Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, QC, Canada; Department of Medicine, McGill University, Montréal, Québec, Canada; Department of Twin Research, King's College London, London, UK. Electronic address:
Identifying novel, high-yield drug targets is challenging and often results in a high failure rate. However, recent data indicates that leveraging human genetic evidence to identify and validate these targets significantly increases the likelihood of success in drug development. Two recent papers from Open Targets claimed that around half of FDA-approved drugs had targets with direct human genetic evidence.
View Article and Find Full Text PDFViruses
January 2025
Programa de Pós-Graduação em Doenças Infecciosas e Parasitárias, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-913, Brazil.
Background And Objectives: HTLV-1-associated myelopathy (HAM) is a chronic progressive inflammatory disease of the spinal cord. This study assesses the diagnostic accuracy of the neuroinflammatory biomarkers neopterin and cysteine-X-cysteine motif chemokine ligand 10 (CXCL-10) in cerebrospinal fluid (CSF) for HAM.
Methods: CSF samples from 75 patients with neurological disorders-33 with HAM (Group A), 19 HTLV-1-seronegative with other neuroinflammatory diseases (Group B), and 23 HTLV-1-seronegative with non-neuroinflammatory diseases (Group C)-were retrospectively evaluated.
Polymers (Basel)
January 2025
Departamento de Ciencias Preclínicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile.
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a well-known technique for polymer analysis, particularly for determining the molecular weight and structural details of dendrimers. In this study, we evaluated the performance of various matrices, such as 2',4',6'-trihydroxyacetophenone (THAP), α-cyano-4-hydroxycinnamic acid (HCCA), and sinapinic acid (SA), and their combinations, on the sensitivity and resolution of poly(amidoamine) (PAMAM) dendrimers of different generations (G3.0, G4.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
Vibration sensors are integral to a multitude of engineering applications, yet the development of low-cost, easily assembled devices remains a formidable challenge. This study presents a highly sensitive flexible vibration sensor, based on the piezoresistive effect, tailored for the detection of high-dynamic-range vibrations and accelerations. The sensor's design incorporates a polylactic acid (PLA) housing with cavities and spherical recesses, a polydimethylsiloxane (PDMS) membrane, and electrodes that are positioned above.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Facultad de Ingeniería, Universidad Autónoma de Baja California, Mexicali 21280, Mexico.
Lock-in amplifiers (LIAs) are critical tools in precision measurement, particularly for applications involving weak signals obscured by noise. Advances in signal processing algorithms and hardware synthesis have enabled accurate signal extraction, even in extremely noisy environments, making LIAs indispensable in sensor applications for healthcare, industry, and other services. For instance, the electrical impedance measurement of the human body, organs, tissues, and cells, known as bioelectrical impedance, is commonly used in biomedical and healthcare applications because it is non-invasive and relatively inexpensive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!