Objective: Advanced glycation end-products (AGEs) constitute a highly heterogeneous family of compounds, relevant in the pathogenesis of diabetic complications, which could represent efficient biomarkers of disease progression and drug response. Unfortunately, due to their chemical heterogeneity, no method has been validated to faithfully monitor their levels in the course of the disease. In this study, we refine a procedure to quantitatively analyze fluorescent AGEs (fAGEs), a subset considered remarkably representative of the entire AGE family, and measure them in in vitro glycated BSA (gBSA) and in plasma and vitreous of diabetic rats, for testing its use to possibly quantify circulating AGEs in patients, as markers of metabolic control.

Methods: fAGE levels were evaluated by spectrofluorimetric analysis in in vitro and in vivo experimental models. BSA was glycated in vitro with increasing D-glucose concentrations for a fixed time or with a fixed D-glucose concentration for increasing time. In in vivo experiments, streptozotocin-induced diabetic rats were studied at 1, 3, 6 and 12weeks to analyze plasma and vitreous. To confirm the presence of AGEs in our models, non-diabetic rat retinal explants were exposed to high glucose (HG), to reproduce short-term effects, or in vitro gBSA, to reproduce long-term effects of elevated glucose concentrations. Rat retinal explants and diabetic retinal tissues were evaluated for the receptor for advanced glycation end-product (RAGE) by Western blot analysis.

Results: In in vitro experiments, fluorescence emission showed glucose concentration- and time-dependent increase of fAGEs in gBSA (p≤0.05). In streptozotocin-induced diabetic rats, fAGE in plasma and vitrei showed an increase at 6 (p≤0.005) and 12 (p≤0.05) weeks of diabetes, with respect to control. RAGE was time-dependently upregulated in retinas incubated with gBSA, but not with HG, and in diabetic retinal tissue, substantiating exposure to AGEs.

Conclusions: Applying the proposed technique, we could show that fAGEs levels increase with glucose concentration and time of exposure in vitro. Furthermore, in diabetic rats, it showed that circulating fAGEs are similarly upregulated as those in vitreous, suggesting a correlation between circulating and tissue AGEs. These results support the use of this method as a simple and reliable test to measure circulating fAGEs and monitor diabetes progression.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.metabol.2017.03.004DOI Listing

Publication Analysis

Top Keywords

diabetic rats
16
advanced glycation
12
glycation end-products
8
vitro vivo
8
plasma vitreous
8
streptozotocin-induced diabetic
8
rat retinal
8
retinal explants
8
diabetic retinal
8
circulating fages
8

Similar Publications

The herbal extracts of four traditional plants; namely leaves, fruits leaves, and seeds, were identified for their main constituents using UHPLC/QTOF-MS/MS. Then, a pharmacology-based analysis and molecular docking verification were established targeting the evaluation of each individual herbal extract for their antidiabetic/anti-obesity potential besides their safety. Streptozotocin-induced diabetic rats were used to evaluate antiobesity and insulinotropic effects against insulin (10 U/Kg, IP) and metformin (100 mg/Kg, per oral) as standard regimens.

View Article and Find Full Text PDF

β-ecdysone/PLGA composite scaffolds promote skull defect healing in diabetic rat.

Front Bioeng Biotechnol

January 2025

Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China.

Introduction: Diabetes mellitus often leads to bone metabolism disorders, hindering bone regeneration and delaying the healing of bone defects. β-Ecdysone, a plant-derived hormone known for its wide range of physiological activities, possesses hypoglycemic effects and promotes osteogenic differentiation. This study developed a composite PLGA slow-release scaffold loaded with β-ecdysone to enhance its bioavailability through topical administration and to investigate its potential to heal diabetic bone defects.

View Article and Find Full Text PDF

Pharmacological modulation of Sigma-1 receptor ameliorates pathological neuroinflammation in rats with diabetic neuropathic pain via the AKT/GSK-3β/NF-κB pathway.

Brain Res Bull

January 2025

Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang, 712046, PR China; Key Laboratory of Pharmacodynamic Mechanism and Material Basis of Traditional Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, PR China. Electronic address:

Diabetic neuropathic pain (DNP) is a common complication of diabetes mellitus (DM) and is characterized by spontaneous pain and neuroinflammation. The Sigma-1 receptor (Sig-1R) has been proposed as a target for analgesic development. It is an important receptor with anti-inflammatory properties and has been found to regulate DNP.

View Article and Find Full Text PDF

Obesity is a global health crisis linked to numerous adverse outcomes including cardiovascular disease, type 2 diabetes, cancer and cognitive decline. This study investigated the sex-specific effects of monosodium glutamate (MSG)-induced obesity on learning, memory, anxiety-like behavior, oxidative stress, and genotoxicity in rats. In 32 neonatal Wistar albino rats, subcutaneous MSG injections were administered to induce obesity.

View Article and Find Full Text PDF

Purpose: We downloaded the gene expression profiles of patients with diabetic nephropathyfrom the GEO database and combined it with differential gene analysis of rat transcriptome,our study employed animal models to examine the role of key hub genes in diabetic nephropathy and to pinpoint significant gene regulation in this disease.

Methods: An examination of differential expression was performed using the online analysis tool GEO2R and the DN-related datasets GSE30528 and GSE1009 obtained from the GEO database. A comparison of gene expression between the normal and diabetic nephropathy groups was conducted using the RNA-seq technique.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!