Background: SREBP cleavage-activating protein (SCAP) is a cholesterol binding endoplasmic reticulum (ER) membrane protein that is required to activate SREBP transcription factors. SREBPs regulate genes involved in lipid biosynthesis. They also influence lipid clearance by modulating the expression of LDL receptor (LDLR) and proprotein convertase subtilisin/kexin type 9 (PCSK9) genes. Inhibiting SCAP decreases circulating PCSK9, triglycerides (TG), and LDL-cholesterol (LDL-C), both in vitro and in vivo. Type 2 diabetics with dyslipidemia are at high risk for cardiovascular diseases. These patients present a unique pathophysiological lipid profile characterized by moderately elevated LDL-C, elevated TG and reduced HDL-cholesterol (HDL-C). The spontaneous dysmetabolic rhesus monkey model (DysMet RhM) recapitulates this human dyslipidemia and therefore is an attractive preclinical model to evaluate SCAP inhibition as a therapy for this disease population. The objective to of this study was to assess the effect of SCAP inhibition on the lipid profile of DysMet RhM.
Method: We assessed the effect of inhibiting hepatic SCAP on the lipid profile of DysMet RhM using an siRNA encapsulated lipid nanoparticle (siRNA-LNP).
Results: The SCAP siRNA-LNP significantly reduced LDL-C, PCSK9 and TG in DysMet RhM; LDL-C was reduced by ≥20%, circulating PCSK9 by 30-40% and TG by >25%. These changes by the SCAP siRNA-LNP agree with the predicted effect of SCAP inhibition and reduced SREBP tone on these endpoints.
Conclusion: These data demonstrate that a SCAP siRNA-LNP improved the lipid profile in a clinically relevant preclinical disease model and provide evidence for SCAP inhibition as a therapy for diabetic dyslipidemic patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.metabol.2017.02.015 | DOI Listing |
Int J Syst Evol Microbiol
January 2025
Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
A Gram-stain-positive, facultatively anaerobic, rod-shaped strain, designated SPB1-3, was isolated from tree bark. This strain exhibited heterofermentative production of dl-lactic acid from glucose. Optimal growth was observed at 25-40 °C, pH 4.
View Article and Find Full Text PDFJ Med Virol
February 2025
Division of Gastroenterology and Hepatology, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, South Korea.
While entecavir (ETV) and tenofovir disoproxil fumarate (TDF) effectively manage chronic hepatitis B, their long-term effects on lipid metabolism and cardiovascular outcomes remain unclear. This study compares the impact of ETV, TDF, and treatment-naïve (control group) on hyperlipidemia and major adverse cardiac events (MACE) in people living with chronic hepatitis B (PLWHB). We used claim data from the South Korean National Health Insurance Service.
View Article and Find Full Text PDFJ Clin Microbiol
January 2025
Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan.
, a slow-growing nontuberculous mycobacterium, causes Buruli ulcer, a neglected tropical disease. Distinguishing from related species, including , poses challenges with respect to making accurate identifications. In this study, we developed a rapid and simple identification method based on mycobacterial lipid profiles and used matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to analyze the lipid profiles of ( = 35) and ( = 19) isolates.
View Article and Find Full Text PDFJ Am Heart Assoc
January 2025
Center for Non-Communicable Disease Management Beijing Children's Hospital, Capital Medical University, National Center for Children's Health Beijing China.
Background: The differential impact of serum lipids and their targets for lipid modification on cardiometabolic disease risk is debated. This study used Mendelian randomization to investigate the causal relationships and underlying mechanisms.
Methods: Genetic variants related to lipid profiles and targets for lipid modification were sourced from the Global Lipids Genetics Consortium.
Background And Aims: Metabolic Dysfunction Associated Steatotic Liver Disease (MASLD) is reversible at early stages, making early identification of high-risk individuals clinically valuable. Previously, we demonstrated that patient-derived induced pluripotent stem cells (iPSCs) harboring MASLD DNA risk variants exhibit greater oleate-induced intracellular lipid accumulation than those without these variants. This study aimed to develop an iPSC-based MASLD risk predictor using functional lipid accumulation assessments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!