Metacognitive verbs (MCVs) such as believe, know and think allow a speaker to describe the thoughts, feelings and perspectives of the self and others. As such, these words reflect the speaker's awareness of differing mental events and activities, or Theory of Mind (ToM). This study investigated the use of MCVs in adolescents with typical language development in relation to the production of complex sentences. It was of interest to determine the frequency with which adolescents used MCVs and to explore the links between MCVs and different types of subordinate clauses. Language samples that had been collected during previous research involving fables were examined. The results indicated that adolescents frequently used MCVs, particularly during a critical-thinking task, and that MCVs were associated with the production of complex sentences containing various types of subordinate clauses. This information may be useful to speech-language pathologists in their work with adolescents who have language impairments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/02699206.2017.1318953 | DOI Listing |
Chem Rec
January 2025
Bioinspired & Biomimetic Inorganic Chemistry Laboratory, Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala, 673601, India.
Direct methane to methanol conversion is a dream reaction in industrial chemistry, which takes inspiration from the biological methanol production catalysed by methane monooxygenase enzymes (MMOs). Over the years, extensive studies have been conducted on this topic by bioengineering the MMOs, and tailoring methods to isolate the MMOs in the active form. Similarly, remarkable achievements have been noted in other methane activation strategies such as the use of heterogeneous catalysts or molecular catalysts.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100193, China.
In this context, we reported for the first time the design and development of a self-assembled nanoantiviral pesticide based on the star polycation (SPc) and the broad-spectrum fungicide/antiviral agent seboctylamine for field control of (SMV), a highly destructive plant virus in soybean crops. The SPc could self-assemble with seboctylamine through hydrogen bonds and van der Waals forces, and the complexation with SPc reduced the particle size of seboctylamine to form a spherical seboctylamine/SPc complex. In addition, the contact angle of seboctylamine decreased, and its retention increased with the aid of SPc, indicating excellent wetting properties and strong leaf surface adhesion performance.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
In traditional atom transfer radical polymerization (ATRP), oxygen must be meticulously eliminated due to its propensity to quench radical species and halt the polymerization process. Additionally, oxygen oxidizes the lower-valent Cu catalyst, compromising its ability to activate alkyl halides and propagate polymerization. In this study, we present an oxygen-driven ATRP utilizing alkylborane compounds, a method that not only circumvents the need for stringent oxygen removal but also exploits oxygen as an essential cofactor to promote polymerization.
View Article and Find Full Text PDFEmerg Microbes Infect
January 2025
College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China.
Phages demonstrate remarkable promise as antimicrobial agents against antibiotic-resistant bacteria. However, the emergence of phage-resistant strains poses challenges to their effective application. In this paper, we presented the isolation of a phage adaptive mutant that demonstrated enhanced and sustained antibacterial efficacy through the co-evolution of () 111-2 and phage ZX1Δint .
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Department of Biochemistry, University of Zurich, Winterthurerstrass 190, 8057 Zurich, Switzerland.
Type III clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) systems (type III CRISPR-Cas systems) use guide RNAs to recognize RNA transcripts of foreign genetic elements, which triggers the generation of cyclic oligoadenylate (cOA) second messengers by the Cas10 subunit of the type III effector complex. In turn, cOAs bind and activate ancillary effector proteins to reinforce the host immune response. Type III systems utilize distinct cOAs, including cyclic tri- (cA3), tetra- (cA4) and hexa-adenylates (cA6).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!