The effect of exposure to sub-minimum inhibitory concentrations of carvacrol, for either 3-10 days, on direct (carvacrol) or cross-protection (cinnamaldehyde, eugenol, antibiotics) and the influence on planktonic and biofilm growth of four Staphylococcus aureus strains were reported. The sequential exposure to carvacrol resulted in a direct protection that was more evident in two of the four strains after 10 days. No significant cross-protection against cinnamaldehyde, eugenol and antibiotics was detected. An adaptive response was associated with a prolonged lag phase, a lower yield of bacteria, a colony phenotype likely to be associated to small colony variants and an increase in biofilm production. Generally, the biofilm of the adapted strains was less susceptible to subMICs of carvacrol compared to the biofilms of non-adapted strains. In contrast, it was demonstrated that in the case of mature biofilms the susceptibility was similar. The exposure of S. aureus to carvacrol at concentrations above the MIC resulted in a very low mutation frequency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/08927014.2017.1323080 | DOI Listing |
Front Immunol
January 2025
Department of Biomedicine, Aarhus University, Aarhus, Denmark.
The innate immune system plays a critical role in the rapid recognition and elimination of pathogens through pattern recognition receptors (PRRs). Among these PRRs are the C-type lectins (CTLs) langerin, mannan-binding lectin (MBL), and surfactant protein D (SP-D), which recognize carbohydrate patterns on pathogens. Each represents proteins from different compartments of the body and employs separate effector mechanisms.
View Article and Find Full Text PDFRegen Biomater
December 2024
Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China.
Injury caused by excess reactive oxygen species (ROS) may lead to susceptibility to bacterial infection and sustained inflammatory response, which are the major factors impeding diabetic wound healing. By utilizing optimal anti-inflammatory, antioxidant and antibacterial biomaterials for multifunctional wound dressings is critical in clinical applications. In this study, a novel electrospun PLGA/MoS@Pd nanofiber membrane was synthesized by encapsulating antioxidant and near-infrared (NIR) responsive MOS@Pd nanozymes in PLGA nanofibers to form a multifunctional dressing for diabetic wound repair.
View Article and Find Full Text PDFFront Oral Health
January 2025
Department of Microbiology, Virology and Immunology, Poltava State Medical University, Poltava, Ukraine.
Unlabelled: Today, about 15.0% of odontogenic pathology is caused by (). The aim of the study was to predict the development of antimicrobial resistance of based on retrospective data.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Basic Medical Sciences, Faculty of Medicine, Abadan University of Medical Sciences, Abadan, Iran.
Background: This study aimed to evaluate the biofilm formation abilities of clinical strains, assess their antibiotic susceptibility patterns, and identify the prevalence of adhesion-associated genes.
Methodology: In this study, a total of 60 strains were collected from urine, pus, wounds, blood, body fluid, and sputum in health centers affiliated with Abadan University of Medical Sciences, Iran. Strains were identified via microbiological methods and polymerase chain reaction (PCR) to target the gene.
Heliyon
January 2025
Department of Biological Sciences, Faculty of Science, Beirut Arab University, Tripoli, 1300, Lebanon.
The present study reports the characterization of the phytochemical content and the antibacterial activity of ethanolic extracts from the leaves (LE) and stems (SE) of against Methicillin resistant (MRSA. Important functional groups were determined by analyzing the FTIR spectra of LE and SE. The phytochemical profiles were analyzed by GC-MS, and these characterized the chemicals according to retention periods and peak regions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!