Introduction of plasmids into gastric cancer cells by endoscopic ultrasound.

Oncol Lett

Department of Neurosurgery, National Hospital Organization, Shimoshizu Hospital, Yotsukaido, Chiba 284-0003, Japan.

Published: May 2017

Short hairpin RNA of frizzled-2 (shRNA-Fz2) suppresses the cell proliferation of gastric cancer cells. Endoscopic ultrasound (EUS) is considered a suitable method for the introduction of therapeutic plasmids into cells, since the device enables the access and real-time monitoring of gastric cancer tissues. In the present study, plasmids were introduced into cells by sonoporation, as evidenced by the production of HO. The production of HO was measured by absorbance of a potassium-starch solution irradiated with EUS. Luciferase activity was analyzed in the cells irradiated with EUS after the addition of a pMetLuc2-control in the media, and cell proliferation was analyzed using a 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium inner salt assay after irradiation with EUS following the addition of shRNA-Fz2. Absorbance levels corresponding to free radical levels were found to be higher in the cells irradiated with EUS. Luciferase activities were found to be significantly higher in the transfected cells (plasmid with Lipofectamine LTX) than in untreated cells and were furthermore found to be higher in MKN45 cells irradiated for 0.5 min than in cells not subjected to irradiation. Luciferase activity was also found to be higher in MKN74 cells irradiated for 2 min than in cells that were not irradiated. Although the cell proliferation of the MKN45 cells tended to be suppressed by irradiation with EUS, this was non-significant suppression, while the cell proliferation of MKN74 cells was found to be suppressed by irradiation with 12 MHz for 2 min (P<0.05). In conclusion, plasmids were introduced into cultured gastric cancer cells by irradiation with EUS due to sonoporation, as evidenced by the production of HO; however, the efficiency of the plasmid introduction was low compared with a traditional transfection approach.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5431313PMC
http://dx.doi.org/10.3892/ol.2017.5836DOI Listing

Publication Analysis

Top Keywords

cells irradiated
20
cell proliferation
16
cells
14
gastric cancer
12
irradiated eus
12
cancer cells
8
cells endoscopic
8
endoscopic ultrasound
8
eus luciferase
8
luciferase activity
8

Similar Publications

Exploring Glypican-3 targeted CAR-NK treatment and potential therapy resistance in hepatocellular carcinoma.

PLoS One

January 2025

Department of Pathology, Yale School of Medicine, Yale University, New Haven, Connecticut, United States of America.

Hepatocellular carcinoma (HCC) is the most prevalent form of primary liver cancer and the second leading cause of cancer-related mortality globally. Despite advancements in current HCC treatment, it remains a malignancy with poor prognosis. Therefore, developing novel treatment options for patients with HCC is urgently needed.

View Article and Find Full Text PDF

Curcumin-coated iron oxide nanoparticles for photodynamic therapy of breast cancer.

Photochem Photobiol Sci

January 2025

Nanosensors Laboratory, Research & Development Institute, University of Vale do Paraíba, Av. Shishima Hifumi, 2911, Urbanova, São José dos Campos, São Paulo, Brazil.

Breast cancer is the deadliest cancer among women and its treatment using traditional methods leads the patient to experience adverse effects. However, photodynamic therapy (PDT) is a non-invasive therapy modality that works through a photosensitizing agent, which treating activated by a suitable light source, releases reactive oxygen species capable of treating cancer. Furthermore, recent research indicates that combining PDT and nanoparticles can enhance therapeutic effects.

View Article and Find Full Text PDF

Synergistic photodynamic/photothermal therapy (PDT/PTT) can be used to target cancer cells by locally generating singlet oxygen species or increasing temperature under laser irradiation. This approach offers higher tumor ablation efficiency, lower therapeutic dose requirements, and reduced side effects compared to single treatment approaches. However, the therapeutic efficiency of PDT/PTT is still limited by the low oxygen levels within the solid tumors caused by abnormal vasculature and altered cancer cell metabolism.

View Article and Find Full Text PDF

Colorectal carcinoma (CRC) progression is associated with an increase in PROX1+ tumor cells, which exhibit features of CRC stem cells and contribute to metastasis. Here, we aimed to provide a better understanding to the function of PROX1+ cells in CRC, investigating their progeny and their role in therapy resistance. PROX1+ cells in intestinal adenomas of ApcMin/+ mice expressed intestinal epithelial and CRC stem cell markers, and cells with high PROX1 expression could both self-renew tumor stem/progenitor cells and contribute to differentiated tumor cells.

View Article and Find Full Text PDF

The intricacy, diversity, and heterogeneity of cancers make research focus on developing multimodal synergistic therapy strategies. Herein, an oxygen (O) self-feeding peroxisomal lactate oxidase (LOX)-based LOX-Ce6-Mn (LCM) was synthesized using a biomineralization approach, which was used for cascade chemodynamic therapy (CDT)/photodynamic therapy (PDT) combination therapies through dual depletion of lactate (Lac) and reactive oxygen species (ROS) generation. After endocytosis into tumor cells, the endogenous hydrogen peroxide (HO) can be converted to O by the catalase-like (CAT) activity of LCM, which can facilitate the catalytic reaction of LOX to consume more Lac and alleviate tumor hypoxia to enhance the generation of singlet oxygen (O) upon light irradiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!