AI Article Synopsis

  • A model was created to study how ferredoxin (Fd) and nitrate reductase (NR) interact, using structures from two specific cyanobacteria species.
  • Five amino acids on NR were genetically modified to test their role in electrostatic interactions with Fd, using various scientific methods to measure activity and binding.
  • Results showed that certain amino acid changes (R43Q, R46Q, K201Q, K614Q) led to decreased activity and binding affinity for Fd, indicating these residues are crucial for Fd's effective interaction with NR.

Article Abstract

An in silico model for the 1:1 ferredoxin (Fd)/nitrate reductase (NR) complex, using the known structure of Synechocystis sp. PCC 6803 Fd and the in silico model of Synechococcus sp. PCC 7942 NR, is used to map the interaction sites that define the interface between Fd and NR. To test the electrostatic interactions predicted by the model complex, five positively charged NR amino acids (Arg43, Arg46, Arg197, Lys201, and Lys614) and a negatively charged amino acid (Glu219) were altered using site-directed mutagenesis and characterized by activity measurements, metal analysis, and electron paramagnetic resonance (EPR) studies. All of the charge replacement variants retained wild-type levels of activity with reduced methyl viologen (MV), but a significant decrease in activity was observed for the R43Q, R46Q, K201Q, and K614Q variants when reduced Fd served as the electron donor. EPR analysis as well as the Fe and Mo analyses showed that loss of activity observed with these variants was not the consequence of perturbation of the Mo center or [4Fe-4S] cluster. Therefore, the loss of the Fd-linked specific activity observed with these variants can be explained only by invoking a role for Arg43, Arg46, Lys201, and Lys614 in Fd binding. The R43Q, R46Q, K201Q, and K614Q NR variants also showed a decreased binding affinity for Fd, compared to that of wild-type NR, supporting a key role of these four positively charged residues in the productive binding of Fd.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5645249PMC
http://dx.doi.org/10.1021/acs.biochem.7b00025DOI Listing

Publication Analysis

Top Keywords

activity observed
12
silico model
8
positively charged
8
charged amino
8
arg43 arg46
8
lys201 lys614
8
r43q r46q
8
r46q k201q
8
k201q k614q
8
k614q variants
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!