Reactive oxygen species (ROS) contribute to many aspects of physiological and pathological cardiovascular processes. However, the underlying mechanism of ROS induction by low shear stress (LSS) remains unclear. Accumulating evidence has shown that the angiotensin II type 1 receptor (AT1R) is involved in inflammation, apoptosis, and ROS production. Our aim was to explore the role of AT1R in LSS-mediated ROS induction. We exposed human umbilical vein endothelial cells (HUVECs) to LSS (3 dyn/cm ) for different periods of time. Western blotting and immunofluorescence showed that LSS significantly induced AT1R expression in a time-dependent manner. Using immunohistochemistry, we also noted a similar increase in AT1R expression in the inner curvature of the aortic arch compared to the descending aorta in C57BL/6 mice. Additionally, HUVECs were cultured with a fluorescent probe, either DCFH, DHE or DAF, after being subjected to LSS. Cell chemiluminescence and flow cytometry results revealed that LSS stimulated ROS levels and suppressed nitric oxide (NO) generation in a time-dependent manner, which was reversed by the AT1R antagonist Losartan. We also found that Losartan markedly increased endothelial NO synthase (eNOS) phosphorylation at Ser(633,1177) and dephosphorylation at Thr(495), which involved AKT and ERK. Moreover, the ROS level was significantly reduced by endogenous and exogenous NO donors (L-arginine, SNP) and increased by the eNOS inhibitor L-NAME. Overall, we conclude that LSS induces ROS via AT1R/eNOS/NO.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcp.26016DOI Listing

Publication Analysis

Top Keywords

low shear
8
shear stress
8
reactive oxygen
8
oxygen species
8
ros induction
8
at1r expression
8
time-dependent manner
8
ros
7
lss
6
at1r
5

Similar Publications

This study employed large eddy simulation (LES) with the wall-adapting local eddy-viscosity (WALE) model to investigate transitional flow characteristics in an idealized model of a healthy thoracic aorta. The OpenFOAM solver pimpleFoam was used to simulate blood flow as an incompressible Newtonian fluid, with the aortic walls treated as rigid boundaries. Simulations were conducted for 30 cardiac cycles and ensemble averaging was employed to ensure statistically reliable results.

View Article and Find Full Text PDF

Protein aggregation, a major concern in biopharmaceutical quality control, can be accelerated by various stresses during clinical handling. This study investigated potential aggregation risk factors during dilution process with syringe handling for intravenous administration. Using γ-globulin and IgG solutions as surrogate models of antibody therapeutics, we examined the effects of high sliding speeds and piston operations of the syringe on protein aggregation during saline dilution.

View Article and Find Full Text PDF

Formulation development and scale-up of dutasteride liquisolid tablets.

Drug Dev Ind Pharm

January 2025

Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, ul. Medyczna 9, 30-688 Krakow, Poland.

Introduction: Liquisolid (LS) technology is particularly advantageous for poorly water-soluble drugs administered in very low doses because of the improved dissolution rate and superior content uniformity. However, there is a lack of research papers describing the application of this concept on an industrial scale. Thus, we present trials conducted to develop tablets containing 0.

View Article and Find Full Text PDF

This study aimed to develop gastroretentive tablets based on mucoadhesive-floating systems with encapsulated gentian (, Gentianaceae) root extract to overcome the low bioavailability and short elimination half-life of gentiopicroside, a dominant bioactive compound with systemic effect. The formulation also aimed to promote the local action of the extract in the stomach. Tablets were obtained by direct compression of sodium bicarbonate (7.

View Article and Find Full Text PDF

This paper deals with the design of novel epoxy adhesives by incorporating thermoplastic polymers such as polyetherimide (PEI) and poly(ε-caprolactone) (PCL) into a bio-based and recyclable epoxy resin, known as Polar Bear. The adhesives were characterized by their mechanical (quasi-static and dynamic) and rheological properties, thermal stability, and adhesion properties in single-lap joints tested at three different temperatures (i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!