Bronchoalveolar Lavage (BAL) is an experimental procedure that is used to examine the cellular and acellular content of the lung lumen ex vivo to gain insight into an ongoing disease state. Here, a simple and efficient method is described to perform BAL on murine lungs without the need of special tools or equipment. BAL fluid is isolated by inserting a catheter in the trachea of terminally anesthetized mice, through which a saline solution is instilled into the bronchioles. The instilled fluid is gently retracted to maximize BAL fluid retrieval and to minimize shearing forces. This technique allows the viability, function, and structure of cells within the airways and BAL fluid to be preserved. Numerous techniques may be applied to gain further understanding of the disease state of the lung. Here, a commonly used technique for the identification and enumeration of different types of immune cells is described, where flow cytometry is combined with a select panel of fluorescently labeled cell surface-specific markers. The BAL procedure presented here can also be used to analyze infectious agents, fluid constituents, or inhaled particles within murine lungs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5607888 | PMC |
http://dx.doi.org/10.3791/55398 | DOI Listing |
JCI Insight
January 2025
Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, United States of America.
Somatic activating mutations in KRAS can cause complex lymphatic anomalies (CLAs). However, the specific processes that drive KRAS-mediated CLAs have yet to be fully elucidated. Here, we used single-cell RNA sequencing to construct an atlas of normal and KrasG12D-malformed lymphatic vessels.
View Article and Find Full Text PDFDNA Cell Biol
January 2025
Department of Anesthesiology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China.
Lung cancer represents a significant global health burden, with non-small cell lung cancer (NSCLC) being the most common subtype. The current standard of care for NSCLC has limited efficacy, highlighting the necessity for innovative treatment options. Lidocaine, traditionally recognized as a local anesthetic, has emerged as a compound with potential antitumor and anti-inflammatory capabilities.
View Article and Find Full Text PDFDrug Deliv Transl Res
January 2025
Center for Coronary Heart Disease, Department of Cardiology, National Center for Cardiovascular Diseases of China, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Rd, Beijing, 100037, China.
Atherosclerosis is one of the leading causes of ischemic cardiovascular disease worldwide. Recent studies indicated that vascular smooth muscle cells (VSMCs) play an indispensable role in the progression of atherosclerosis. Exosomes derived from mesenchymal stem cells (MSCs) have demonstrated promising clinical applications in the treatment of atherosclerosis.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Faculty of Life Sciences, Department of Pharmaceutical Sciences, Laboratory of Macromolecular Cancer Therapeutics (MMCT), University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
Splice-switching oligonucleotides (SSOs) can restore protein functionality in pathologies and are promising tools for manipulating the RNA-splicing machinery. Delivery vectors can considerably improve SSO functionality in vivo and allow dose reduction, thereby addressing the challenges of RNA-targeted therapeutics. Here, we report a biocompatible SSO nanocarrier, based on redox-responsive disulfide cross-linked low-molecular-weight linear polyethylenimine (cLPEI), for overcoming multiple biological barriers from subcellular compartments to en-route serum stability and finally in vivo delivery challenges.
View Article and Find Full Text PDFAging (Albany NY)
January 2025
Department of Pathology, Yale University School of Medicine, New Haven, CT 06519, USA.
Studies of the aging transcriptome focus on genes that change with age. But what can we learn from age-invariant genes-those that remain unchanged throughout the aging process? These genes also have a practical application: they can serve as reference genes in expression studies. Reference genes have mostly been identified and validated in young organisms, and no systematic investigation has been done across the lifespan.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!