Purpose: Charged particle therapy, especially proton therapy is a growing treatment modality worldwide. Monte Carlo (MC) simulation of the interactions of proton beam with equipment, devices and patient is a highly efficient tool that can substitute measurements for complex and unrealistic experiments. The purpose of this study is to design a MC model of a treatment nozzle to characterize the proton scanning beam and commissioning the model for the Indiana University Health Proton Therapy Center (IUHPTC.

Methods: The general purpose Monte Carlo code FLUKA was used for simulation of the proton beam passage through the elements of the treatment nozzle design. The geometry of the nozzle was extracted from the design blueprints. The initial parameters for beam simulation were determined from calculations of beam optics design to derive a semi-empirical model to describe the initial parameters of the beam entering the nozzle. The lateral fluence and energy distribution of the beam entering the nozzle is defined as a function of the requested range. The uniform scanning model at the IUHPTC is implemented. The results of simulation with the beam and nozzle model are compared and verified with measurements.

Results: The lateral particle distribution and energy spectra of the proton beam entering the nozzle were compared with measurements in the interval of energies from 70 MeV to 204.8 MeV. The accuracy of the description of the proton beam by MC simulation is better than 2% compared with measurements, providing confidence for complex simulation in phantom and patient dosimetry with the MC simulated nozzle and the uniform scanning proton beam.

Conclusions: The treatment nozzle and beam model was accurately implemented in the FLUKA Monte Carlo code and suitable for the research purpose to simulate the scanning beam at IUHPTC.

Download full-text PDF

Source
http://dx.doi.org/10.1118/1.4735580DOI Listing

Publication Analysis

Top Keywords

proton beam
20
monte carlo
16
beam
13
proton therapy
12
treatment nozzle
12
beam entering
12
entering nozzle
12
proton
10
nozzle
10
fluka monte
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!