Existing analyses predict that thin metal films deposited on compliant substrates are subject to a variety of surface instabilities, such as wrinkles, folds, creases, etc., that become more prominent with increased compressive residual stress. Under compressive stress, cracks have been assumed to form only when the interfacial strength is weak, allowing the film to detach from the substrate. In this work, we demonstrate that cracks also form on surfaces under compressive mismatch strain when the interface is strong. In particular, we consider metal alloy films sputter deposited under bias on elastomers with different thicknesses, curing temperatures or surface treatments. The deposition parameters created residual compressive strains and strong adhesion in the bilayers. Samples without surface treatment formed wrinkles and through-thickness cracks at 0.25-0.4% mismatch strains. Only through-thickness cracks were observed in UV treated samples. The crack spacing was found to decrease by a factor of 4 when the surface was UV treated and by a factor of 3 as the elastomer thickness decreased from 30 to 6 μm. Cracks penetrated through the elastomer, 15-30 times deeper than the film thickness, and formed in all samples with a brittle coating. A numerical model was developed to explain the formation of through-thickness cracks and wrinkles under applied compressive mismatch strains. The model suggests that cracks can initiate from the peak of wrinkles when the critical fracture strength of the coating is exceeded. For the UV treated samples, through-thickness cracks are possibly impacted by the formation of an embrittled near surface PDMS layer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c7sm00340d | DOI Listing |
ACS Appl Nano Mater
December 2024
G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30318, United States.
The reliability of nanocomposite conductive inks under cyclic loading is the key to designing robust flexible electronics. Although resistance increases with cycling and models exist, the exact degradation mechanism is not well understood and is critical for developing inks. This study links cracking behavior to changes in electrical resistance by performing in situ cyclic stretch experiments in scanning electron microscopy (SEM) with synchronized resistance measurements.
View Article and Find Full Text PDFComput Part Mech
February 2024
Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190 China.
This paper addresses the critical issue of leading edge erosion (LEE) on modern wind turbine blades (WTBs) caused by solid particle impacts. LEE can harm the structural integrity and aerodynamic performance of WTBs, leading to reduced efficiency and increased maintenance costs. This study employs a novel particle-based approach called hybrid peridynamics-discrete element method (PD-DEM) to model the impact of solid particles on WTB leading edges and target material failure accurately.
View Article and Find Full Text PDFUltrasonics
January 2025
College of Aerospace Engineering, Chongqing University, Chongqing 400044, China. Electronic address:
This paper proposed a Lamb wave-based defect imaging method with multipath edge reflections, which can detect the crack-like defect in blind zones that is invisible for the conventional delay-and-sum algorithm. In the implementation process, mirror points of transducers with respect to all the four plate edges are firstly introduced as extra virtual transmitters and receivers. By assuming the defect position, all of the potential traveling paths of edge-reflected wave packets can be next traced.
View Article and Find Full Text PDFMaterials (Basel)
July 2024
Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, VA 23529, USA.
An experimental investigation of interlaminar toughness for post-cured through-thickness reinforcement (PTTR) skin-stringer sub-element is presented. The improvement in the crack resistance capability of skin-stringer samples was shown through experimental testing and finite element analysis (FEA) modeling. The performance of PTTR was evaluated on a pristine and initial-disbond of the skin-stringer specimen.
View Article and Find Full Text PDFMaterials (Basel)
April 2024
Department of Mechanical Engineering, University of California, Berkeley, CA 94720, USA.
Variations in the microstructure and the dominant fretting wear mechanisms of carbon steel alloy in oscillatory sliding contact against stainless steel in a dry atmosphere were evaluated by various mechanical testing and microanalytical methods. These included scanning electron microscopy and energy dispersive spectrometry with corresponding elemental maps of the wear tracks, in conjunction with cross-sectional transmission electron microscopy of samples prepared by focused ion beam machining to assess subsurface and through-thickness changes in microstructure, all as a function of applied load and sliding time. Heavily dislocated layered microstructures were observed below the wear tracks to vary with both the load and sliding time.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!