Neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD) is a hereditary metabolic disease arising from biallelic mutations of SLC25A13. This study aimed to explore the characteristics of fasting blood glucose (FBG), fasting insulin (FINS) and C-peptide (C-P) levels in NICCD infants, analyze their SLC25A13 genetic mutations and further discuss the correlation between SLC25A13 genetic mutations and biochemical changes. Seventy-two cases of infants with cholestasis disease were gathered. Among them, 36 cases with NICCD diagnosis were case group. Meanwhile, 36 cases with unknown etiology but excluded NICCD were control group. FBG, FINS, C-P, ALT, AST, GGT, ALP, TG, HDL-C, LDL-C and Non-HDL-C were collected from all subjects, and DNA was extracted from venous blood for SLC25A13 mutations detection. The incidence of hypoglycemia was 3% in NICCD group. There were no significant statistical difference of FBG, FINS and C-P between NICCD and INC groups ( P > 0.05). ALT, LDL-C and Non-HDL-C levels in NICCD group were lower than the INC group, while SLC25A13 mutations were associated with the level of GGT ( P < 0.05). Ten different SLC25A13 genetic mutations were detected, among which, 851del4, IVS16ins3kb, IVS6+5 G > A and 1638ins23 mutations made up 82% of all mutations. The incidence of hypoglycemia may be higher in small gestational age infants with NICCD. Low LDL-C may be one of the characteristics of dyslipidemia in NICCD infants. There was a correlation between SLC25A13 gene mutations distribution and the GGT level, but the meaning of this finding remains to be further in-depth study. Impact statement This study aims to compare FBG, FINS, C-P, other biochemical and clinical manifestations between NICCD and non-NICCD infants, and discuss differential diagnosis of NICCD and INC beyond the genetic analysis. And investigate the correlation between SLC25A13 genetic mutations and biochemical changes. This work presented that incidence of hypoglycemia may be higher in small gestational age infants with NICCD. Low LDL-C may be one of the characteristics of dyslipidemia in NICCD infants. There was a correlation between SLC25A13 gene mutations distribution and the GGT level.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5476344 | PMC |
http://dx.doi.org/10.1177/1535370217710918 | DOI Listing |
Clin Chim Acta
January 2025
Background: Citrin deficiency (CD) is an autosomal recessive metabolic disorder affecting the urea cycle and energy production. Diagnosis involves measuring ammonia, amino acid levels (eg: citrulline), with confirmation through solute carrier family 25 member 13 (SLC25A13) gene mutation analysis. Herein, we present a case report of a variant in the SLC25A13 gene that has not been previously reported in the literature.
View Article and Find Full Text PDFUrol J
December 2024
Health Sciences University Umraniye Training and Research Hospital, Department of Medical Genetics, Istanbul, Turkey.
Front Genet
May 2024
Department of Medical Genetics, National Health Commission Key Laboratory of Birth Defects Research, Hunan Provincial Maternal and Child Healthcare Hospital, Changsha, China.
Background: Inborn errors of metabolism (IEMs) are rare diseases caused by inherited defects in various biochemical pathways that strongly correlate with early neonatal mortality and stunting. Currently, no studies have reported on the incidence of IEMs of multi-ethnic groups in Huaihua, China.
Methods: A total of 206,977 neonates with self-reported ethnicity who underwent IEM screening at Huaihua from 2015 to 2021 were selected for observation.
Int J Mol Sci
April 2023
Department of Genomics and Precision Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20052, USA.
Urea cycle enzymes and transporters collectively convert ammonia into urea in the liver. Aberrant overexpression of carbamylphosphate synthetase 1 () and (citrin) genes has been associated with faster proliferation of tumor cells due to metabolic reprogramming that increases the activity of the CAD complex and pyrimidine biosynthesis. N-acetylglutamate (NAG), produced by NAG synthase (NAGS), is an essential activator of CPS1.
View Article and Find Full Text PDFDis Markers
May 2022
Department of Nursing, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China 310015.
Purpose: Skin cutaneous melanoma (SKCM) is one of the most malignant and aggressive cancers with poor prognosis due to its rapid progression towards metastasis. Thus, finding clinically relevant biomarkers for early diagnosis, prognosis, and therapy prediction is essential. This study focused on the identification of SLC25A13 as a novel biomarker for SKCM and is aimed at investigating the biological functions of solute carrier family 25 member 13 (SLC25A13) in the development of SKCM.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!