Reagent Design and Ligand Evolution for the Development of a Mild Copper-Catalyzed Hydroxylation Reaction.

Org Lett

Department of Process Research and Development, Merck & Co., Inc. , Rahway, New Jersey 07065, United States.

Published: June 2017

Parallel synthesis and mass-directed purification of a modular ligand library, high-throughput experimentation, and rational ligand evolution have led to a novel copper catalyst for the synthesis of phenols with a traceless hydroxide surrogate. The mild reaction conditions reported here enable the late-stage synthesis of numerous complex, druglike phenols.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.orglett.7b01403DOI Listing

Publication Analysis

Top Keywords

ligand evolution
8
reagent design
4
design ligand
4
evolution development
4
development mild
4
mild copper-catalyzed
4
copper-catalyzed hydroxylation
4
hydroxylation reaction
4
reaction parallel
4
parallel synthesis
4

Similar Publications

The stability of perovskite quantum dot solar cells is one of the key challenges of this technology. This study reveals the unique degradation behavior of cesium lead triiodide (CsPbI) quantum dot solar cells. For the first time, it is shown that the oxygen-induced degradation and performance loss of CsPbI quantum dot photovoltaic devices can be reversed by exposing the degraded samples to humidity, allowing the performance to recover and even surpass the initial performance.

View Article and Find Full Text PDF

Aptamers are synthetic oligonucleotides that bind with high affinity and specificity to various targets, making them invaluable for diagnostics, therapeutics, and biosensing. Microfluidic platforms can improve the efficiency and scalability of aptamer selection, especially through advancements in systematic evolution of ligands by exponential enrichment (SELEX) methods. Microfluidic SELEX methods are less time-consuming and labor-intensive and include critical steps like library preparation, binding, partitioning, and amplification.

View Article and Find Full Text PDF

Understanding the Role of Potential and Cation Effect on Electrocatalytic CO Reduction in All-Alkynyl-Protected Ag Nanoclusters.

J Am Chem Soc

January 2025

School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, China.

Atomically precise metal nanoclusters (NCs) have emerged as an intriguing class of model catalysts for electrochemical CO reduction reactions (CORR). However, the interplay between the interface environment (e.g.

View Article and Find Full Text PDF

Mismatched electron and proton transport rates impede the manifestation of effective performance of the electrocatalytic oxygen evolution reaction (OER), thereby limiting its industrial applications. Inspired by the natural protein cluster in PS-II, different organic-inorganic hybrid electrocatalysts were synthesized via a hydrothermal method. -Toluidine (PT), benzoic acid (BA), and -aminobenzoic acid (PABA) were successfully intercalated into NiFe-LDH.

View Article and Find Full Text PDF

The application of aptamers in the repair of bone, nerve, and vascular tissues.

J Mater Chem B

January 2025

Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing, 100044, China.

Aptamers represent a distinct category of short nucleotide sequences or peptide molecules characterized by their ability to bind to specific targets with high precision. These molecules are predominantly synthesized through SELEX (Systematic Evolution of Ligands by Exponential Enrichment) technology. Recent findings indicate that aptamers may have significant applications in regenerative medicine, particularly in the domain of tissue repair.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!