Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this work, the feasibility of absolute dose to water measurements using a small-scale graphite probe calorimeter (GPC) in a clinical environment is established. A numerical design optimization study was conducted by simulating the heat transfer in the GPC resulting from irradiation using a finite element method software package. The choice of device shape, dimensions and materials was made to minimize the heat loss in the sensitive volume of the GPC. The resulting design, which incorporates a novel aerogel-based thermal insulator, was built in-house. Absorbed dose to water measurements were made under standard conditions in a 6 MV 1000 MU/min photon beam and subsequently compared against TG-51 derived values. The average measured dose to water was 95.7 ±1.4 cGy/100 MU, as compared to an expected value of 96.6 cGy/100 MU. The Monte Carlo-calculated graphite to water dose conversion factor was 1.099, while the derived heat loss correction factors varied between 1.005 and 1.013. The most significant sources of uncertainty were the repeatability (type A, 1.4%) and thermistor calibration (type B, 2.1%). The contribution of these factors to the overall uncertainty is expected to decrease significantly upon the implementation of active thermal stabilization provided by a temperature controller and direct electrical calibration, respectively. This work demonstrates the feasibility of using the GPC as a practical clinical absolute photon dosimeter and will serve as the basis for a miniaturized version applicable to small and composite fields.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1118/1.4740106 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!