A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Sci-Thur PM: YIS - 09: Development of a graphite probe calorimeter for absolute clinical dosimetry: Numerical design optimization, prototyping and experimental proof-of-concept. | LitMetric

In this work, the feasibility of absolute dose to water measurements using a small-scale graphite probe calorimeter (GPC) in a clinical environment is established. A numerical design optimization study was conducted by simulating the heat transfer in the GPC resulting from irradiation using a finite element method software package. The choice of device shape, dimensions and materials was made to minimize the heat loss in the sensitive volume of the GPC. The resulting design, which incorporates a novel aerogel-based thermal insulator, was built in-house. Absorbed dose to water measurements were made under standard conditions in a 6 MV 1000 MU/min photon beam and subsequently compared against TG-51 derived values. The average measured dose to water was 95.7 ±1.4 cGy/100 MU, as compared to an expected value of 96.6 cGy/100 MU. The Monte Carlo-calculated graphite to water dose conversion factor was 1.099, while the derived heat loss correction factors varied between 1.005 and 1.013. The most significant sources of uncertainty were the repeatability (type A, 1.4%) and thermistor calibration (type B, 2.1%). The contribution of these factors to the overall uncertainty is expected to decrease significantly upon the implementation of active thermal stabilization provided by a temperature controller and direct electrical calibration, respectively. This work demonstrates the feasibility of using the GPC as a practical clinical absolute photon dosimeter and will serve as the basis for a miniaturized version applicable to small and composite fields.

Download full-text PDF

Source
http://dx.doi.org/10.1118/1.4740106DOI Listing

Publication Analysis

Top Keywords

dose water
12
graphite probe
8
probe calorimeter
8
numerical design
8
design optimization
8
water measurements
8
heat loss
8
sci-thur yis
4
yis development
4
development graphite
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!