Degradation and adsorption of tralkoxydim in Chinese soils and water-sediment environments.

Environ Monit Assess

Nanjing Institute of Environmental Science, Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Environmental Protection of the People's Republic of China, Nanjing, 210042, China.

Published: June 2017

Tralkoxydim is a cyclohexanedione herbicide primarily used for gramineous weed control in China. In this paper, we present results of a tralkoxydim laboratory environmental fate study characterizing its degradation, adsorption, and mobility behavior in three different soils and two water-sediment systems (river and lake) in China. Degradation half-life of tralkoxydim in soil under aerobic conditions was 5.1, 7.7, and 7.9 days in Jiangxi red soil, Taihu paddy soil, and Northeast China black soil, respectively. Under anaerobic and flooding conditions, half-life values were 6.2, 15.1, and 19.8 days for the same three soils, respectively. Soil pH was the major factor effecting tralkoxydim degradation. In the aerobic water-sediment experiments, tralkoxydim degraded faster in the river system (total system half-life 43.3 days) than the lake system (total system half-life 99.0 days). Correspondingly, its anaerobic degradation half-life values were 46.2 and 53.3 days for the river and lake systems, respectively. Tralkoxydim adsorption in the three soils was found to follow the empirical Freundlich isotherm. The adsorption coefficient (K ) was 8.60, 1.00, and 1.57 for Jiangxi red soil, Taihu paddy soil, and Northeast China black soil, respectively. Soil pH was the major factor effecting tralkoxydim adsorption. Adsorption free energy change was less than 40 kJ mol in all three soils, indicating a physical mechanism in the process. Thin-layer chromatography (TLC) tests showed that relative to the solvent transport to 11.5 cm, the travel distance of tralkoxydim was 8-10 cm in the three soils, corresponding Rf values at 0.05, 0.35, and 0.75 for Jiangxi red soil, Taihu paddy soil, and Northeast China black soil, respectively. Results of this work suggest that under alkaline conditions, tralkoxydim adsorption becomes smaller; thus, assessments on its mobility and potential groundwater impact should focus on these soil types.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10661-017-5984-5DOI Listing

Publication Analysis

Top Keywords

three soils
20
soil
13
jiangxi red
12
red soil
12
soil taihu
12
taihu paddy
12
paddy soil
12
soil northeast
12
northeast china
12
china black
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!