Exposure to arsenic on a regular basis, mainly through drinking water, agricultural pesticide, and sometimes therapeutic dose, results in various diseases of different tissues including the bone marrow hematopoietic system. Hematopoiesis is a dynamic process by which bone marrow (BM) hematopoietic stem/progenitor cells (HSPCs) generate a relatively constant pool of functionally mature blood cells by the support of microenvironmental components. The present study has been aimed to understand stem cell microenvironmental status during arsenic toxicity and the consequent reflection of dysregulation involving the hematopoietic machinery in experimental mice. Swiss albino mice were experimentally exposed to 10 μg arsenic trioxide/g body weight through oral gavage and 5 μg arsenic trioxide/g body weight intraperitoneally for a period of 30 days. Altered hemogram values in peripheral blood reflected the impaired hematopoiesis which was further validated by the reduced BM cellularity along with the deviated BM cell morphology as observed by scanning electron microscopy post arsenic exposure. The stromal cells were unable to establish a healthy matrix and the sustainability of hematopoietic progenitors was drastically affected in arsenic-exposed mouse groups, as observed in in vitro explant culture. The inability of stromal cells to establish supportive matrix was also explained by the decreased adherent colony formation in treated animals. Furthermore, the flow cytometric characterization of CXCR4 and Sca-1 CD44 receptor expressions confirmed the dysregulation in the hematopoietic microenvironment. Thus, considering the importance of microenvironment in the maintenance of HSPC, it can be concluded that arsenic toxicity causes microenvironmental damage, leading to niche derangement and impaired hematopoiesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12011-017-1022-2 | DOI Listing |
Nucleosides Nucleotides Nucleic Acids
January 2025
Division of Hematology, Department of Internal Medicine, Medical Faculty, Tekirdağ Namık Kemal University, Tekirdağ, Turkey.
Breast cancer is the most common malignancy that affects women. MicroRNAs (miRNAs) play an essential role in cancer therapy and regulate many biological processes such as cisplatin resistance. The study's objective was to determine whether miR-182 dysregulation was the cause of cisplatin resistance in TNBC cell line MDA-MB-231.
View Article and Find Full Text PDFJ Foot Ankle Res
March 2025
Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK.
Background: Midfoot pain is common but poorly understood, with radiographs often indicating no anomalies. This study aimed to describe bone, joint and soft tissue changes and to explore associations between MRI-detected abnormalities and clinical symptoms (pain and disability) in a group of adults with midfoot pain, but who were radiographically negative for osteoarthritis.
Methods: Community-based participants with midfoot pain underwent an MRI scan of one foot and scored semi-quantitatively using the Foot OsteoArthritis MRI Score (FOAMRIS).
J Biomed Mater Res B Appl Biomater
January 2025
The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, South Carolina, USA.
The formation of fibrocartilage in microfracture (MFX) severely limits its long-term outlook. There is consensus in the scientific community that the placement of an appropriate scaffold in the MFX defect site can promote hyaline cartilage formation and improve therapeutic benefit. Accordingly, in this work, a novel natural biomaterial-the cartilage analog (CA)-which met criteria favorable for chondrogenesis, was evaluated in vitro to determine its candidacy as a potential MFX scaffold.
View Article and Find Full Text PDFCancers (Basel)
January 2025
Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer, Brighton BN1 9PX, UK.
Background/objectives: Acute myeloid leukemia (AML) is an aggressive neoplasm. Although most patients respond to induction therapy, they commonly relapse due to recurrent disease in the bone marrow microenvironment (BMME). So, the disruption of the BMME, releasing tumor cells into the peripheral circulation, has therapeutic potential.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Department of Hematology and Bone Marrow Transplant, National Center for Cancer Care and Research, Doha P.O. Box 3050, Qatar.
Background: Renal adverse drug reactions (ADRs) associated with tyrosine kinase inhibitors (TKIs) in the treatment of chronic myeloid leukemia (CML) are relatively rare, and there is currently no standardized protocol for their management. Therefore, this study aimed to summarize renal ADRs related to TKIs use in CML and propose an evidence-based approach to monitor and manage these ADRs.
Methods: A systematic literature review was performed to identify renal ADRs associated with TKIs in CML.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!