Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
BAY 1093884 is a fully human monoclonal antibody against the tissue factor pathway inhibitor (TFPI) in development as prophylaxis in patients with hemophilia with or without inhibitors. In vitro, BAY 1093884 binds to human, mouse, and monkey TFPI. The objective of this study was to find a pharmacodynamic (PD) biomarker after administration of BAY 1093884 to normal monkeys. In monkey plasma, BAY 1093884 exhibited an IC (concentration that inhibits 50%) of 4.65 and 6.19 nM for free TFPI and diluted prothrombin time (dPT), respectively. The BAY 1093884 pharmacokinetic (PK) profile and its PD effects on dPT and free TFPI levels were assessed after intravenous and subcutaneous administration of BAY 1093884 (5 and 20 mg/kg) to female cynomolgus monkeys. Free TFPI concentrations in plasma decreased rapidly and increased to baseline in a dose-dependent manner. dPT clotting time was shortened and correlated with free TFPI levels and drug concentration in plasma, demonstrating the relationship between PD activities (dPT clotting time and free TFPI levels) and drug concentration. BAY 1093884 exhibited nonlinear PK, and a target-mediated drug disposition model was used to characterize the BAY 1093884 versus TFPI concentration-response relationship. We concluded that a mechanism-based PK/PD binding model could be useful for predicting human response to BAY 1093884. For the first-in-human study, measurement of free TFPI will be included as part of the dose-escalation design.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1208/s12248-017-0086-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!