We report the fabrication of a flexible, lightweight and disposable multi walled carbon nanotube (MWCNT)-zinc oxide (ZnO) nanofiber based chemiresistive biosensor for label free detection of the malaria biomarker, histidine rich protein II (HRP2). The sensing platform is formed by depositing nanofibers in between the source and drain electrodes patterned on a thin, flexible polyethylene terephthalate (PET) substrate. MWCNT-ZnO nanofibers are synthesized via the electrospinning technique followed by a calcination process. This approach creates functional groups on the nanofiber surface that are used for the one step immobilization of HRP2 antibodies without further surface modification. The device exhibits a good sensitivity of 8.29 kΩ g mL and a wide detection range of 10 fg mL-10 ng mL, and it is specific towards the targeted HRP2 biomarker. To the best of our knowledge, this is the first report on a flexible chemiresistive biosensor explored for the detection of the malaria biomarker and can be extended in the future to several other biomarker detection systems towards smart point-of-care (POC) diagnostics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c7an00243b | DOI Listing |
ACS Appl Mater Interfaces
December 2024
Department of Electrical Engineering, Indian Institute of Technology, Hyderabad, Telangana 502285, India.
This work presents a facile, ultrasensitive, and selective chemiresistive biosensor assisted by an adaptive signal extraction algorithm (ASEA) for detecting vimentin, a potential biomarker for ovarian cancer detection. The low-cost device, fabricated on a PCB substrate through sacrificial copper etching, features a 3D-IDE design with interwoven comb-like structures mimicking the natural symmetry of a droplet. An unequal count of positive and negative concentric circle fingers ensures a uniform, higher electric field over the sensor's surface, as verified by COMSOL Multiphysics 3D simulation.
View Article and Find Full Text PDFMikrochim Acta
October 2024
Department of Electrical Engineering, Indian Institute of Technology, Hyderabad, India.
The development of an affordable chemiresistive biosensor enhanced with a multi-walled carbon nanotube-zinc oxide (MWCNT-ZnO) nanofiber composite is presented. The sensor leverages the precise interaction between lipoarabinomannan (LAM) tuberculosis (TB) antigens and antibodies to achieve high sensitivity and specificity. The MWCNT-ZnO nanofibers have a larger surface area and better electrical conductivity, which makes it easier for TB antibodies to stick to them.
View Article and Find Full Text PDFACS Omega
October 2024
School of Chemical and Biomolecular Engineering, and the Centre for Advanced Food Engineering, The University of Sydney, Sydney, NSW 2006, Australia.
The concentration of nonesterified fatty acids (NEFAs) in biological media is associated with metabolic and cardiovascular disorders (e.g., diabetes, cancer, and cystic fibrosis) and in food products is indicative of their quality.
View Article and Find Full Text PDFBiosens Bioelectron
January 2025
Department of Electrical Engineering, Indian Institute of Technology Hyderabad, 502285, India. Electronic address:
Drop-casted polypyrrole (PPY) nanomaterial-based point-of-care Traumatic Brain Injury (TBI) immunosensing platforms reported previously demand trained manpower at field-test, due to poor adhesion between nanomaterial and electrode surface, limiting the point-of-care purpose. The usage of conventional clean-room-based physical and chemical vapor deposition techniques in creating strong adhesion is limited on account of cost and process complexity. Addressing this technical gap, we report a novel low-cost clean-room-free technique that can effectively electrodeposit the PPY simultaneously onto the working areas of array of Interdigitated microelectrodes (IDμEs) from the precursor solution.
View Article and Find Full Text PDFACS Sens
September 2024
Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, 2-24 York Street, Belfast, Northern Ireland BT15 1AP, United Kingdom.
Lung cancer remains a global health concern, demanding the development of noninvasive, prompt, selective, and point-of-care diagnostic tools. Correspondingly, breath analysis using nanobiosensors has emerged as a promising noninvasive nose-on-chip technique for the early detection of lung cancer through monitoring diversified biomarkers such as volatile organic compounds/gases in exhaled breath. This comprehensive review summarizes the state-of-the-art breath-based lung cancer diagnosis employing chemiresistive-module nanobiosensors supported by theoretical findings.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!