Nanoparticulate and molecular adjuvants have shown great efficacy in enhancing immune responses, and the immunogenic vaccines of the future will most likely contain both. To investigate the immunostimulatory effects of molecular adjuvants on nanoparticle vaccines, we have designed ovalbumin (OVA) protein nanoparticles coated with two different adjuvants-flagellin (FliC) and immunoglobulin M (IgM). These proteins, derived from and mice, respectively, are representatives of pathogen- and host-derived molecules that can enhance immune responses. FliC-coated OVA nanoparticles, soluble FliC (sFliC) admixed with OVA nanoparticles, IgM-coated nanoparticles, and OVA-coated nanoparticles were assessed for immunogenicity in an mouse immunization study. IgM coatings on nanoparticles significantly enhanced both antibody and T cell responses, and promoted IgG2a class switching but not affinity maturation. FliC-coated nanoparticles and FliC-admixed with nanoparticles both triggered IgG2a class switching, but only FliC-coated nanoparticles enhanced antibody affinity maturation. Our findings that affinity maturation and class switching can be directed independently of one another suggest that adjuvant coatings on nanoparticles can be tailored to generate specific vaccine effector responses against different classes of pathogens.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5412930PMC
http://dx.doi.org/10.1002/btm2.10052DOI Listing

Publication Analysis

Top Keywords

class switching
12
affinity maturation
12
nanoparticles
10
adjuvant coatings
8
nanoparticle vaccines
8
molecular adjuvants
8
immune responses
8
ova nanoparticles
8
coatings nanoparticles
8
nanoparticles enhanced
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!