The traditional view of "sequence-structure-function" has been amended by the discovery of intrinsically disordered proteins. Almost 50% of PDB structures are now known to have one or more regions of disorder, which are involved in diverse functions. These regions typically possess low aromatic content and sequence complexity as well as high net charge and flexibility. In this study, we examined the composition and contribution of intrinsic disorder in outer membrane β barrel protein functions. Our systematic analysis to find the dual personality (DP) fragments, which often function by disorder-order transitions, revealed the presence of 61 DP fragments with 234 residues in β barrel trans membrane protein structures. It was found that though the disorder is more prevalent in the periplasmic regions, most of the residues which undergo disorder-order transitions are found in the extracellular regions. For example, the calcium binding sites in BtuB protein are found to undergo disorder to order transition upon binding calcium. The conformational change in the cell receptor binding site of the OpcA protein, which is important in host cell interactions of was also found to be due to the disorder-order transitions occurring in the presence of the ligand. The natively disordered nature of DP fragments makes it more appropriate to call them "functional fragments of disorder." The present study provides insight into the roles played by intrinsically disordered regions in outer membrane protein functions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5424791 | PMC |
http://dx.doi.org/10.4161/idp.24848 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!