The influence of parasites on host reproduction has been widely studied in natural and experimental conditions. Most studies, however, have evaluated the parasite impact on female hosts only, neglecting the contribution of males for host reproduction. This omission is unfortunate as sex-dependent infection may have important implications for host-parasite associations. Here, we evaluate for the first time the independent and nonindependent effects of gender infection on host reproductive success using the kissing bug and the protozoan as model system. We set up four crossing treatments including the following: (1) both genders infected, (2) both genders uninfected, (3) males infected-females uninfected, and (4) males uninfected-females infected, using fecundity measures as response variables. Interactive effects of infection between sexes were prevalent. Uninfected females produced more and heavier eggs when crossed with uninfected than infected males. Uninfected males, in turn, sired more eggs and nymphs when crossed with uninfected than infected females. Unexpectedly, infected males sired more nymphs when crossed with infected than uninfected females. These results can be explained by the effect of parasitism on host body size. As infection reduced size in both genders, infection on one sex only creates body size mismatches and mating constraints that are not present in pairs with the same infection status. Our results indicate the fitness impact of parasitism was contingent on the infection status of genders and mediated by body size. As the fecundity impact of parasitism cannot be estimated independently for each gender, inferences based only on female host infection run the risk of providing biased estimates of parasite-mediated impact on host reproduction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5433981 | PMC |
http://dx.doi.org/10.1002/ece3.2956 | DOI Listing |
Metabolomics
January 2025
Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
Background: Gestational exposure to non-persistent endocrine-disrupting chemicals (EDCs) may be associated with adverse pregnancy outcomes. While many EDCs affect the endocrine system, their effects on endocrine-related metabolic pathways remain unclear. This study aims to explore the global metabolome changes associated with EDC biomarkers at delivery.
View Article and Find Full Text PDFVirology
January 2025
College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China. Electronic address:
Porcine circovirus type 3 (PCV3) is an emerging pathogen that causes porcine dermatitis, and reproductive failure. PCV3 Cap interacts with DExD/H-box helicase 36 (DHX36), a protein that functions primarily through regulating interferon (IFN)-β production. However, how the interaction between DHX36 and PCV3 Cap regulates viral replication remains unknown.
View Article and Find Full Text PDFLife (Basel)
January 2025
State Key Laboratory Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou 730046, China.
is used as an experimental animal model for the study of three-host ticks due to its special life cycle and easy maintenance in the laboratory and in its reproduction. The life cycle of goes through a tightly regulated life cycle to adapt to the changing host and environment, and these stages of transition are also accompanied by proteome changes in the body. Here, we used the isobaric tags for a relative and absolute quantification (iTRAQ) technique to systematically describe and analyze the dynamic expression of the protein and the molecular basis of the proteome of in seven differential developmental stages (eggs, unfed larvae, engorged larvae, unfed nymphs, engorged nymphs unfed adults, and engorged adults).
View Article and Find Full Text PDFInsects
January 2025
College of Environmental and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia.
Innate immunity is critical for insects to adjust to complicated environments. Studying the insect immune system can aid in identifying novel insecticide targets and provide insights for developing novel pest control strategies. Insects recognize environmental pathogens through pattern recognition receptors, thus activating the innate immune system to eliminate pathogens.
View Article and Find Full Text PDFInsects
January 2025
Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Fytokou St., 38446 Volos, Greece.
Temperature and host fruit availability are key factors influencing the life history traits of the Mediterranean fruit fly (medfly) (). This study examines how developmental temperature and host fruit type affect adult longevity and fecundity in medflies from six populations spanning Southern to Central Europe. Larvae were reared on apples and bitter oranges at three constant temperatures (15, 20, and 25 °C), with pupae maintained under the same thermal conditions until adult emergence.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!