Changes in climate conditions, particularly during the Quaternary climatic oscillations, have long been recognized to be important for shaping patterns of species diversity. For species residing in the western Palearctic, two commonly observed genetic patterns resulting from these cycles are as follows: (1) that the numbers and distributions of genetic lineages correspond with the use of geographically distinct glacial refugia and (2) that southern populations are generally more diverse than northern populations (the "southern richness, northern purity" paradigm). To determine whether these patterns hold true for the widespread pest species the winter moth (), we genotyped 699 individual winter moths collected from 15 Eurasian countries with 24 polymorphic microsatellite loci. We find strong evidence for the presence of two major genetic clusters that diverged ~18 to ~22 ka, with evidence that secondary contact (i.e., hybridization) resumed ~ 5 ka along a well-established hybrid zone in Central Europe. This pattern supports the hypothesis that contemporary populations descend from populations that resided in distinct glacial refugia. However, unlike many previous studies of postglacial recolonization, we found no evidence for the "southern richness, northern purity" paradigm. We also find evidence for ongoing gene flow between populations in adjacent Eurasian countries, suggesting that long-distance dispersal plays an important part in shaping winter moth genetic diversity. In addition, we find that this gene flow is predominantly in a west-to-east direction, suggesting that recently debated reports of cyclical outbreaks of winter moth spreading from east to west across Europe are not the result of dispersal.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5433974 | PMC |
http://dx.doi.org/10.1002/ece3.2860 | DOI Listing |
Insects
December 2024
The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
The beet armyworm (Hübner), a global pest, feeds on and affects a wide range of crops. Its long-distance migration with the East Asian monsoon frequently causes large-scale outbreaks in East and Southeast Asia. This pest mainly breeds in tropical regions in the winter season every year; however, few studies have investigated associations with its population movements in this region.
View Article and Find Full Text PDFSci Rep
December 2024
Institute of Agrobiological Sciences, NARO, Tsukuba, Ibaraki, Japan.
Recent changes in climate and environments have promoted the range expansion of insect pests of tropical and subtropical origins into temperate regions. For more accurate and faster risk assessment of this expansion, we developed a novel indicator to link a physiologically derived parameter of chilling injury with the survival of insect populations in nature by using two insects, Spodoptera frugiperda and Cicadulina bipunctata with tropical and subtropical origins, and one cool-adapted insect, Laodelphax striatellus. The parameter derived from a proportional increment in the time to 99.
View Article and Find Full Text PDFZootaxa
August 2024
PPG Biologia Animal; Departamento de Zoologia; Instituto de Biociências; Universidade Federal do Rio Grande do Sul; Av. Bento Gonçalves 9500; 91501-970 Porto Alegre; RS; Brazil; Instituto Uiraçú; Reserva Serra Bonita; Camacan; BA; Brazil.
Heliozela pitangavora Moreira & Fochezato sp. nov. (Lepidoptera: Adeloidea: Heliozelidae), a leaf miner of Eugenia uniflora L.
View Article and Find Full Text PDFOecologia
December 2024
Ashworth Laboratories, Institute for Ecology and Evolution, University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, United Kingdom.
Elife
November 2024
Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China.
Seasonal polyphenism enables organisms to adapt to environmental challenges by increasing phenotypic diversity. exhibits remarkable seasonal polyphenism, specifically in the form of summer-form and winter-form, which have distinct morphological phenotypes. Previous research has shown that low temperature and the temperature receptor regulate the transition from summer-form to winter-form in by impacting cuticle content and thickness.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!