The WZ production cross section is measured by the CMS experiment at the CERN LHC in proton-proton collision data samples corresponding to integrated luminosities of 4.9[Formula: see text] collected at [Formula: see text], and 19.6[Formula: see text] at [Formula: see text]. The measurements are performed using the fully-leptonic WZ decay modes with electrons and muons in the final state. The measured cross sections for [Formula: see text] are [Formula: see text] [Formula: see text] and [Formula: see text] [Formula: see text]. Differential cross sections with respect to the [Formula: see text] boson [Formula: see text], the leading jet [Formula: see text], and the number of jets are obtained using the [Formula: see text] data. The results are consistent with standard model predictions and constraints on anomalous triple gauge couplings are obtained.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5409800PMC
http://dx.doi.org/10.1140/epjc/s10052-017-4730-zDOI Listing

Publication Analysis

Top Keywords

[formula text]
52
text] [formula
20
text]
16
[formula
13
production cross
8
anomalous triple
8
triple gauge
8
gauge couplings
8
cross sections
8
measurement production
4

Similar Publications

On the causal connection in lifespan correlations and the possible existence of a 'number of life' at molecular level.

Sci Rep

December 2024

Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago, Chile.

Multiple physiological traits correlates with lifespan, being unclear both the causal connection among them and with the process of ageing. In this paper, we show that six traits (such as metabolic rate, mass, heart rate, etc) acting at the system level, are all related to lifespan thru the existence of an approximately constant number of respiration cycles in a lifespan ([Formula: see text]), therefore, we find that those relationships are not independently related to ageing. In addition, we study if the approximately constant [Formula: see text] is possibly linked with the end-of-lifespan somatic mutation burden, another number recently found to be approximately constant (Cagan, Nature 604:517-524, 2022).

View Article and Find Full Text PDF

Diabetes Mellitus combined with Mild Cognitive Impairment (DM-MCI) is a high incidence disease among the elderly. Patients with DM-MCI have considerably higher risk of dementia, whose daily self-care and life management (i.e.

View Article and Find Full Text PDF

Aluminum alloys have promising characteristics which make them more useful in industrial applications for thermal management and entropy of the fluidic system. Hence, the current research deals with the analysis of entropy and thermal performance of (CHO-HO)/50:50% saturated by (AA7072/AA7076/TiAIV) alloys. Traditional problem modified using enhanced characteristics of ternary alloys and hydrocarbon 50:50% base fluid.

View Article and Find Full Text PDF

Early prediction of patient responses to neoadjuvant chemotherapy (NACT) is essential for the precision treatment of early breast cancer (EBC). Therefore, this study aims to noninvasively and early predict pathological complete response (pCR). We used dynamic ultrasound (US) imaging changes acquired during NACT, along with clinicopathological features, to create a nomogram and construct a machine learning model.

View Article and Find Full Text PDF

Identifying and understanding the nonlinear behavior of memristive devices.

Sci Rep

December 2024

Chair of Applied Electrodynamics and Plasma Technology, Ruhr University Bochum, Universitätsstraße 150, 44780, Bochum, Germany.

Nonlinearity is a crucial characteristic for implementing hardware security primitives or neuromorphic computing systems. The main feature of all memristive devices is this nonlinear behavior observed in their current-voltage characteristics. To comprehend the nonlinear behavior, we have to understand the coexistence of resistive, capacitive, and inertia (virtual inductive) effects in these devices.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!