We present the design and characterization of waveguide grating devices that couple visible-wavelength light at λ = 674 nm from single-mode, high index-contrast dielectric waveguides to free-space beams forming micron-scale diffraction-limited spots a designed distance and angle from the grating. With a view to application in spatially-selective optical addressing, and in contrast to previous work on similar devices, deviations from the main Gaussian lobe up to 25 microns from the focus and down to the 5 × 10 level in relative intensity are characterized as well; we show that along one dimension the intensity of these weak sidelobes approaches the limit imposed by diffraction from the finite field extent in the grating region. Additionally, we characterize the polarization purity in the focal region, observing at the center of the focus a low impurity <3 × 10 in relative intensity. Our approach allows quick, intuitive design of devices with such performance, which may be applied in trapped-ion quantum information processing and generally in any systems requiring optical routing to or from objects 10 s-100 s of microns from a chip surface, but benefitting from the parallelism and density of planar-fabricated dielectric integrated optics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5435719 | PMC |
http://dx.doi.org/10.1038/s41598-017-02169-2 | DOI Listing |
Commun Biol
December 2024
Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, 560012, India.
Single-molecule localization microscopy (SMLM) can decipher fine details that are otherwise impossible using diffraction-limited microscopy. Often, the reconstructed super-resolved images suffer from noise, strong background and are prone to false detections that may impact quantitative imaging. To overcome these limitations, we propose a technique (corrSMLM) that recognizes and detects fortunate molecules (molecules with long blinking cycles) from the recorded data.
View Article and Find Full Text PDFBiomed Opt Express
December 2024
Department of Ophthalmology, Stanford University, Palo Alto, CA 94303, USA.
We explore camera-based pupil tracking using high-level programming in computing platforms with end-user discrete and integrated central processing units (CPUs) and graphics processing units (GPUs), seeking low calculation latencies previously achieved with specialized hardware and programming (Kowalski et al., [Biomed. Opt.
View Article and Find Full Text PDFNanophotonics
August 2024
Nanophotonics Research Center, Institute of Microscale Optoelectronics & State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering & Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China.
ACS Nano
December 2024
School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China.
Adv Mater
November 2024
Zhejiang Key Laboratory of 3D Micro/Nano Fabrication and Characterization, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou, 310030, China.
Enhancing energy density and efficiency in laser processing hinges on precise beam focusing, yet this often causes severe heat absorption and focus shifts in optical lenses. Traditional cooling methods increase cost and complexity, severely limiting versatility. Here, monolithic silicon carbide (SiC) metalens is introduced, which shows unparalleled thermal stability, integrated with a high-power laser.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!