AI Article Synopsis

  • Tuberculosis-causing bacteria predominantly infect alveolar macrophages and have evolved strategies to evade the immune system and survive in host lesions.
  • A newly identified protein, Msh1, shows lipase and protease activities and is crucial for breaking down host lipids for energy, particularly under low-oxygen conditions.
  • The study highlights that Msh1 is essential for the bacteria's growth in lipid-rich environments and helps us understand how the pathogen sources nutrients to persist in the host.

Article Abstract

causes tuberculosis in humans and predominantly infects alveolar macrophages. To survive inside host lesions and to evade immune surveillance, this pathogen has developed many strategies. For example, uses host-derived lipids/fatty acids as nutrients for prolonged persistence within hypoxic host microenvironments. imports these metabolites through its respective transporters, and in the case of host fatty acids, a pertinent question arises: does have the enzyme(s) for cleavage of fatty acids from host lipids? We show herein that a previously uncharacterized membrane-associated protein encoded by is conserved exclusively in actinomycetes, exhibits both lipase and protease activities, is secreted into macrophages, and catalyzes host lipid hydrolysis. In light of these functions, we annotated Rv2672 as mycobacterial secreted hydrolase 1 (Msh1). Furthermore, we found that this enzyme is up-regulated both in an model of hypoxic stress and in a mouse model of infection, suggesting that the pathogen requires Msh1 under hypoxic conditions. Silencing Msh1 expression compromised the ability of to proliferate inside lipid-rich foamy macrophages but not under regular culture conditions , underscoring Msh1's importance for persistence in lipid-rich microenvironments. Of note, this is the first report providing insight into the mechanism of host lipid catabolism by an enzyme, augmenting our current understanding of how meets its nutrient requirements under hypoxic conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5500798PMC
http://dx.doi.org/10.1074/jbc.M117.794297DOI Listing

Publication Analysis

Top Keywords

host lipid
12
fatty acids
8
hypoxic conditions
8
host
7
characterization secretory
4
secretory hydrolase
4
hydrolase sheds
4
sheds critical
4
critical insight
4
insight host
4

Similar Publications

Fatty Acids in Cnidaria: Distribution and Specific Functions.

Mar Drugs

January 2025

A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, ul. Palchevskogo 17, Vladivostok 690041, Russia.

The phylum Cnidaria comprises five main classes-Hydrozoa, Scyphozoa, Hexacorallia, Octocorallia and Cubozoa-that include such widely distributed and well-known animals as hard and soft corals, sea anemones, sea pens, gorgonians, hydroids, and jellyfish. Cnidarians play a very important role in marine ecosystems. The composition of their fatty acids (FAs) depends on food (plankton and particulate organic matter), symbiotic photosynthetic dinoflagellates and bacteria, and de novo biosynthesis in host tissues.

View Article and Find Full Text PDF

Mechanisms of lipid homeostasis in the Coxiella Containing Vacuole.

Biochem Soc Trans

January 2025

Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, U.S.A.

Coxiella burnetii, the causative agent of human Q fever, is an obligate intracellular bacterial pathogen that replicates in a large, membrane-bound vacuole known as the Coxiella Containing Vacuole (CCV). The CCV is a unique, phagolysosome-derived vacuole with a sterol-rich membrane containing host and bacterial proteins. The CCV membrane itself serves as a barrier to protect the bacteria from the host's innate immune response, and the lipid and protein content directly influence both the CCV luminal environment and interactions between the CCV and host trafficking pathways.

View Article and Find Full Text PDF

Recent advances in engineering non-native microorganisms for poly(3-hydroxybutyrate) production.

World J Microbiol Biotechnol

January 2025

Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.

Poly(3-hydroxybutyrate) (PHB) is a biodegradable polymer that belongs to a group of polymers called polyhydroxyalkanoates (PHAs). PHB can be synthesized from renewable resources, making it a promising alternative to petroleum-derived plastics. It is also considered non-toxic, biodegradable, and biocompatible, which makes it suitable for various applications in the medicine and biomedicine.

View Article and Find Full Text PDF

The greenhouse whitefly Trialeurodes vaporariorum Westwood is one of the most important economic pests of greenhouse products around the world. The use of pesticides is one of the most common methods to control this pest. The wide distribution of the host, the large number of generations, and the polyphagous nature of T.

View Article and Find Full Text PDF

Despite their high clinical relevance, obtaining structural and biophysical data on transmembrane proteins has been hindered by challenges involved in their expression and extraction in a homogeneous, functionally-active form. The inherent enzymatic activity of receptor tyrosine kinases (RTKs) presents additional challenges. Oncogenic fusions of RTKs with heterologous partners represent a particularly difficult-to-express protein subtype due to their high flexibility, aggregation propensity and the lack of a known method for extraction within the native lipid environment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!