Hyperglycemia and hypertension are considered to be the two leading risk factors for vascular disease in diabetic patients. However, few pharmacologic agents could provide a combinational therapy for controlling hyperglycemia and hypertension at the same time in diabetes. The objectives of this study are to investigate whether berberine treatment could directly reduce blood pressure and identify the molecular mechanism underlying the vascular protection of berberine in diabetic rats. Berberine was intragastrically administered with different dosages of 50, 100 and 200 mg/kg/day to diabetic rats for 8 weeks since the injection of streptozotocin. The endothelium-dependent/-independent relaxation in middle cerebral arteries was investigated. The activity of large-conductance Ca-activated K channel (BK) was investigated by recording whole-cell currents, analyzing single-channel activities and assessing the expressions of α- and β1-subunit at protein or mRNA levels. Results of the study suggest that chronic administration of 100 mg/kg/day berberine not only lowered blood glucose but also reduced blood pressure and improved vasodilation in diabetic rats. Furthermore, berberine markedly increased the function and expression of BK β1-subunit in cerebral vascular smooth muscle cells (VSMCs) isolated from diabetic rats or when exposed to hyperglycemia condition. The present study provided initial evidences that berberine reduced blood pressure and improved vasodilation in diabetic rats by activation of BK channel in VSMCs, which suggested that berberine might provide a combinational therapy for controlling hyperglycemia and blood pressure in diabetes. Furthermore, our work indicated that activation of BK channel might be the underlying mechanism responsible for the vascular protection of berberine in diabetes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1530/JME-17-0014 | DOI Listing |
Eur J Histochem
January 2025
Traditional Chinese Medicine Studio, The First Affiliated Hospital of Xiamen University; Integrated Traditional Chinese and Western Medicine Center, School of Medicine, Xiamen University, Xiamen.
This corrects the article published in European Journal of Histochemistry 2024;68:4140 doi: 10.4081/ejh.2024.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, Lebanon.
Introduction: Androgenetic alopecia (AGA) is a multifactorial and age-related dermatological disease that affects both males and females, usually at older ages. Traditional hair repair drugs exemplified by minoxidil have limitations such as skin irritation and hypertrichosis. Thus, attention has been shifted to the use of repurposing drugs.
View Article and Find Full Text PDFFront Pharmacol
January 2025
National Clinical Research Center for TCM Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
Background: Vascular calcification (VC) commonly occurs in diabetes and is associated with cardiovascular disease incidence and mortality. Currently, there is no drug treatment for VC. The Danlian-Tongmai formula (DLTM) is a traditional Chinese medicine (TCM) prescription used for diabetic VC (DVC), but its mechanisms of action remain unclear.
View Article and Find Full Text PDFFront Pharmacol
January 2025
School of Pharmacy, Shanghai Jiaotong University, Shanghai, China.
Objective: The aim of this study was to investigate the effect of curcumin nanocrystals (Cur-NCs) on ferroptosis in high-glucose (HG)-induced HK-2 cells and streptozotocin (STZ)-induced diabetic nephropathy model (DN) rats. The purpose is to determine whether Cur NCs can become a promising treatment option for diabetes nephropathy by reducing ferroptosis.
Methods: Cur-NCs were prepared using microfluidic technology and studied using dynamic light scattering and transmission electron microscopy.
Drug Des Devel Ther
January 2025
Beijing Tongrentang Technology Development Co., Ltd. Pharmaceutical Factory, Beijing, 100079, People's Republic of China.
Purpose: This study aims to explore the mechanism of Yangxuerongjin pill (YXRJP) in the treatment of diabetic peripheral neuropathy (DPN) by network pharmacology and metabolomics technology combined with animal experiments, and to provide scientific basis for the treatment of DPN.
Methods: In this study, network pharmacology analysis was applied to identify the active compounds, core targets and signal pathways, which might be responsible for the effect of DPN. The DPN model was established by high-fat diet combined with streptozotocin (STZ) injection, and the rats were given administration for 12 weeks.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!