Quantum Monte Carlo Calculations on a Benchmark Molecule-Metal Surface Reaction: H + Cu(111).

J Chem Theory Comput

Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Post Office Box 9502, 2300 RA Leiden, The Netherlands.

Published: July 2017

Accurate modeling of heterogeneous catalysis requires the availability of highly accurate potential energy surfaces. Within density functional theory, these can-unfortunately-depend heavily on the exchange-correlation functional. High-level ab initio calculations, on the other hand, are challenging due to the system size and the metallic character of the metal slab. Here, we present a quantum Monte Carlo (QMC) study for the benchmark system H + Cu(111), focusing on the dissociative chemisorption barrier height. These computationally extremely challenging ab initio calculations agree to within 1.6 ± 1.0 kcal/mol with a chemically accurate semiempirical value. Remaining errors, such as time-step errors and locality errors, are analyzed in detail in order to assess the reliability of the results. The benchmark studies presented here are at the cutting edge of what is computationally feasible at the present time. Illustrating not only the achievable accuracy but also the challenges arising within QMC in such a calculation, our study presents a clear picture of where we stand at the moment and which approaches might allow for even more accurate results in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5508338PMC
http://dx.doi.org/10.1021/acs.jctc.7b00344DOI Listing

Publication Analysis

Top Keywords

quantum monte
8
monte carlo
8
initio calculations
8
carlo calculations
4
calculations benchmark
4
benchmark molecule-metal
4
molecule-metal surface
4
surface reaction
4
reaction cu111
4
accurate
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!