This study aims at evaluating the utility of the population pharmacokinetics approach in therapeutic protein drug-drug-interaction (DDI) assessment. Simulations were conducted for 2 representative victim drugs, methotrexate and trastuzumab, using a parallel-group design with and without the interaction drug. The effect of a perpetrator on the exposure of the victim drug is described as the ratio of clearance/apparent clearance of the victim drug given with or without the perpetrator. The power of DDI assessment was calculated as the percentage of runs with 90% confidence interval of the estimated DDI effect within 80% to 125% for the scenarios of no DDI, benchmarked with the noncompartmental approach with intensive sampling. The impact of the number of subjects, the number of sampling points per subject, sampling time error, and model misspecification on the power of DDI determination were evaluated. Results showed that with equal numbers of subjects in each arm, the population pharmacokinetics approach with sparse sampling may need about the same or a higher number of subjects compared to a noncompartmental approach in order to achieve similar power. Increasing the number of subjects, even if only in the study drug alone arm, can increase the power. Sampling or dosing time error had notable impacts on the power for methotrexate but not for trastuzumab. Model misspecification had no notable impacts on the power for trastuzumab. Overall, the population pharmacokinetics approach with sparse sampling built in phase 2/3 studies allows appropriate DDI assessment with adequate study design and analysis and can be considered as an alternative to dedicated DDI studies.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcph.921DOI Listing

Publication Analysis

Top Keywords

population pharmacokinetics
12
pharmacokinetics approach
12
ddi assessment
12
number subjects
12
utility population
8
methotrexate trastuzumab
8
drug perpetrator
8
victim drug
8
power ddi
8
noncompartmental approach
8

Similar Publications

Long-acting and extended-release drug delivery strategies have greatly improved treatment for a variety of medical conditions. Special populations, specifically infants, children, young people, and pregnant and postpartum women, could greatly benefit from access to these strategies but are often excluded from clinical trials. We conducted a systematic review of all clinical studies involving the use of a long-acting intramuscular injection or implant in infants, children, young people, and pregnant and postpartum people.

View Article and Find Full Text PDF

: Bempedoic acid (BA) is a novel cholesterol-lowering agent with proven positive effects on cardiovascular endpoints. Because it is an inhibitor of the hepatic transporters OATP1B1 and OATP1B3, two uptake transporters regulating the intrahepatic availability of statins, it increases the systemic exposure of co-administered statins. This interaction could raise the risk of myopathy.

View Article and Find Full Text PDF

Background: Salbutamol, a short-acting β-agonist used in asthma treatment, is available in multiple formulations, including inhalers, nebulizers, oral tablets, and intravenous, intramuscular, and subcutaneous routes. Each formulation exhibits distinct pharmacokinetic (PK) and pharmacodynamic (PD) profiles, influencing therapeutic outcomes and adverse effects. Although asthma management predominantly relies on inhaled salbutamol, understanding how these formulations interact with patient-specific characteristics could improve personalized medicine approaches, potentially uncovering the therapeutic benefits of alternative formulations for an individual patient.

View Article and Find Full Text PDF

Vitamin C is an antioxidant and is essential for immune function and infection resistance. Supplementation is necessary when a sufficient amount of vitamin C is not obtained through the diet. Alternative formulations of vitamin C may enhance its bioavailability and retention over traditional ascorbic acid.

View Article and Find Full Text PDF

Glimepiride (GLM), a commonly used sulphonylurea drug for the management of type 2 diabetes mellitus (T2DM), has been the subject of numerous studies exploring its kinetic behaviors. However, a comprehensive evaluation that synthesizes all available pharmacokinetic (PK) data across diverse populations remains limited. This systematic review aims to provide detailed knowledge about the pharmacokinetics (PK), the associated pharmacodynamics (PD), and the drug interactions of GLM, which can be used to assess key parameters and identify factors influencing variability across diverse populations and clinical settings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!