AI Article Synopsis

  • A set of new BODIPY dyes (1-4) was created that absorb near-infrared light and have improved photoacoustic (PA) properties and stability.
  • The study explored how the electronic structure of these dyes influences their PA activity.
  • Tests showed that these dyes could effectively target tumor sites for PA imaging in both laboratory conditions (in vitro) and live organisms (in vivo).

Article Abstract

A series of push-pull type meso-ester substituted BODIPY dyes 1-4 with intense near-infrared absorption, largely enhanced photoacoustic (PA) activity and excellent photo-stability were synthesized. The impact of the electronic structure on the PA activity was also discussed. Moreover, the in vitro and in vivo PA imaging were investigated, which suggested a passive targeting capacity in the tumor site.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7ob00965hDOI Listing

Publication Analysis

Top Keywords

push-pull type
8
type meso-ester
8
meso-ester substituted
8
substituted bodipy
8
bodipy near-infrared
4
near-infrared dyes
4
dyes contrast
4
contrast agents
4
agents photoacoustic
4
photoacoustic imaging
4

Similar Publications

Charge Regulation-Enhanced Type I Photosensitizer-Loaded Hydrogel Dressing for Hypoxic Bacterial Inhibition and Biofilm Elimination.

ACS Nano

January 2025

State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China.

Biofilm-induced chronic bacterial infections represent a significant challenge in modern medicine due to their resistance to conventional antibiotic treatments. Although photodynamic therapy (PDT) has emerged as a promising antibiotic-free antibacterial strategy, the hypoxic condition within biofilms and the lack of an effective local drug delivery system have limited the clinical effectiveness of photosensitizer (PS) agents. Herein, we propose a type of charge regulation-enhanced type I PS-loaded hydrogel dressing for treating biofilm infection.

View Article and Find Full Text PDF

Biomass crops engineered to accumulate energy-dense triacylglycerols (TAG or 'vegetable oils') in their vegetative tissues have emerged as potential feedstocks to meet the growing demand for renewable diesel and sustainable aviation fuel (SAF). Unlike oil palm and oilseed crops, the current commercial sources of TAG, vegetative tissues, such as leaves and stems, only transiently accumulate TAG. In this report, we used grain (Texas430 or TX430) and sugar-accumulating 'sweet' (Ramada) genotypes of sorghum, a high-yielding, environmentally resilient biomass crop, to accumulate TAG in leaves and stems.

View Article and Find Full Text PDF

A facile method for the synthesis of arylidene derivatives of pyrindane - ()-7-arylmethylene-2-chloro-6,7-dihydro-5-cyclopenta[]pyridine-3,4-dicarbonitriles - was developed. Tunable full-color emission was achieved for the synthesized push-pull molecules, solely by changing donor groups while keeping both the conjugated system and acceptor part of the molecule unchanged. This represents a rare approach for the design of such fluorophores.

View Article and Find Full Text PDF

A π-extended cyclobutenofullerene containing an N,N-dimethylanilinoethynyl group was synthesized via a one-pot cascade reaction of C with the corresponding propargylic phosphate. The cyclobutenofullerene was further modified using either one-pot or sequential post-functionalization methods, yielding derivatives containing altered addend structures. During one-pot post-functionalization, hydration reaction of the alkyne moiety continued after the formation of cyclobutenofullerenes.

View Article and Find Full Text PDF

Improving the radiative recombination rate of nonfullerene acceptor (NFA) molecular excited states can help to promote their photoluminescence quantum yield and thus reduce the nonradiative energy loss in NFA-based organic solar cells. In this Letter, by developing a nonadiabatic dynamical simulation method, we clarify quantitative correlations of some typical characteristics of NFA molecules with their radiative recombination rates. For a single NFA molecule, the weakening of electron-phonon coupling and the strengthening of electron-push-pull potential can each improve the radiative recombination rate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!