Here, we systematically investigated the independent, multiple, and synergic effects of three major components, namely, ascorbic acid (AA), seed, and silver ions (Ag), on the characteristics of gold nanorods (GNRs), i.e., longitudinal localized surface plasmon resonance (LSPR) peak position, shape, size, and monodispersity. To quantitatively assess the shape and dimensions of GNRs, we used an automated transmission electron microscopy image analysis method using a MATLAB-based code developed in-house and the concept of solidity, which is the ratio between the area of a GNR and the area of its convex hull. The solidity of a straight GNR is close to 1, while it decreases for both dumbbell- and dogbone-shaped GNRs. We found that the LSPR peak position, shape, and monodispersity of the GNRs all altered simultaneously with changes in the amounts of individual components. For example, as the amount of AA increased, both the LSPR peak and solidity decreased, while the polydispersity increased. In contrast, as the amount of seeds increased, both the LSPR and solidity increased, while the monodispersity improved. More importantly, we found that the influence of each component can actually change depending on the composition of the GNR growth solution. For instance, the LSPR peak position red-shifted as the amount of AA increased when the seed content was low, whereas it blue-shifted when the seed content was high.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c7nr01462g | DOI Listing |
The optical detection of arsenic (As) in human biological fluids and environmental water samples is presented using alpha-cyclodextrin-modified silver nanoparticles (α/CyD-AgNPs) at the trace level. This method is based on the measurement of a red shift of the LSPR band of α/CyD-AgNPs in the region of 200-800 nm. The color of α/CyD-AgNPs was changed from yellow to colorless by the addition of As(iii).
View Article and Find Full Text PDFJ Phys Chem B
December 2024
Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
Due to their distinctive optical, electrical, and catalytic characteristics, gold nanoparticles (AuNPs) have found increasing use for a wide range of applications, including biomedicine and catalysis. Inherent agglomeration propensities impair their functional qualities, stability, and biocompatibility. This work investigates the potential applications of the cataractous eye protein isolate (CEPI), a waste product rich in proteins from cataract surgery, as a novel AuNP stabilizing agent.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China. Electronic address:
J Food Drug Anal
September 2024
Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, PR China.
Chemistry
November 2024
Université Paris-Saclay, UMR 8000 CNRS, Institut de Chimie Physique, 91405, Orsay, France.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!