Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Generally, metal-organic frameworks (MOFs) are made up from kinds of repeating microporous structure. Here, a series of Eu ions activated terephthalate-based lanthanum-organic frameworks (La-MOFs) was synthesized by a hydrothermal reaction. By controlling the reaction time, we obtained some unique brick-shaped La-MOFs in a micron scale size range, and these La-MOFs showed tunable mesoporous and macroporous architectures. It is speculated that the change in the composition and structure of building units results in the formation of this mesoporous and macroporous heterogeneous architectures. Powder X-ray diffraction patterns and Eu luminescence behavior support the speculation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bio.3323 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!