A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Novel Idea to Improve Cardiac Output of Mechanical Circulatory Support Devices by Optimizing Kinetic Energy Transfer Available in Forward Moving Aortic Blood Flow. | LitMetric

Mechanical circulatory support devices (MCSDs) have gained widespread clinical acceptance as an effective heart failure (HF) therapy. The concept of harnessing the kinetic energy (KE) available in the forward aortic flow (AOF) is proposed as a novel control strategy to further increase the cardiac output (CO) provided by MCSDs. A complete mathematical development of the proposed theory and its application to an example MCSDs (two-segment extra-aortic cuff) are presented. To achieve improved device performance and physiologic benefit, the example MCSD timing is regulated to maximize the forward AOF KE and minimize retrograde flow. The proof-of-concept was tested to provide support with and without KE control in a computational HF model over a wide range of HF test conditions. The simulation predicted increased stroke volume (SV) by 20% (9 mL), CO by 23% (0.50 L/min), left ventricle ejection fraction (LVEF) by 23%, and diastolic coronary artery flow (CAF) by 55% (3 mL) in severe HF at a heart rate (HR) of 60 beats per minute (BPM) during counterpulsation (CP) support with KE control. The proposed KE control concept may improve performance of other MCSDs to further enhance their potential clinical benefits, which warrants further investigation. The next step is to investigate various assist technologies and determine where this concept is best applied. Then bench-test the combination of kinetic energy optimization and its associated technology choice and finally test the combination in animals.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13239-017-0305-2DOI Listing

Publication Analysis

Top Keywords

kinetic energy
12
cardiac output
8
mechanical circulatory
8
circulatory support
8
support devices
8
support control
8
novel idea
4
idea improve
4
improve cardiac
4
output mechanical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!